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Abstract: The low efficiency of Raman spectroscopy can be overcome by placing the active
molecules in the vicinity of scatterers, typically rough surfaces or nanostructures with various
shapes. This surface-enhanced Raman scattering (SERS) leads to substantial enhancement that
depends on the scatterer that is used. In this work, we find fundamental upper bounds on the
Raman enhancement for arbitrary-shaped scatterers, depending only on its material constants and
the separation distance from the molecule. According to our metric, silver is optimal in visible
wavelengths while aluminum is better in the near-UV region. Our general analytical bound scales
as the volume of the scatterer and the inverse sixth power of the distance to the active molecule.
Numerical computations show that simple geometries fall short of the bounds, suggesting further
design opportunities for future improvement. For periodic scatterers, we use two formulations to
discover different bounds, and the tighter of the two always must apply. Comparing these bounds
suggests an optimal period depending on the volume of the scatterer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In this paper, we derive upper limits to surface-enhanced Raman scattering (SERS) [1–7] for
arbitrary shapes, both periodic and aperiodic, given only the materials, extending earlier bounds
[8] on linear light emission to a nonlinear process formed from a composition of scattering
problems (inset of Fig. 1), and we show that existing designs such as bowtie antennas are typically
far from the theoretical optimum. Earlier work showed that the efficiency of a single light emitter
(the local density of states, LDOS) scaled as |χ |2/Imχ for a material with susceptibility χ
(= ε − 1) [8], but we find that the Raman bounds scale as the cube of this (Eq. (12)) because
they result from nonlinear composition of a light concentration bound (in which an incident
planewave is concentrated on the Raman molecule) and a light emission bound similar to the
previous LDOS bounds. The concentration part of our bound (∼ |χ |4/(Imχ)2) may also be
applicable to many other problems involving light focusing [9,10]. For periodic surfaces, one
can gain an additional enhancement to concentration from the contribution of other periods,
but we show that there is a trade-off and that the largest benefits (for a single Raman molecule)
seem to arise from optimizing individual scatterers. We obtain both analytical formulas within
general design regions as well as semi-analytical bounds involving numerical integration for
more specific spatial configurations, and we compare typical structures to these bounds. For
structures constrained to lie within a subwavelength spherical volume, we show that spherical
particles are nearly optimal for certain frequencies. For structures that are allowed to extend into
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larger volumes, we find that simple geometries such as bowtie antennas [11–13] are far from our
upper limits, suggesting exciting opportunities for improvement in future designs.

Fig. 1. Comparison of the metric (|χ |2/Imχ)3 for conventional metals used in SERS [31].
Inset: Schematics of the SERS configuration under study. The pump field is incident onto a
scatterer, near which lies the Raman-active chemical. Upon interaction with the pump field,
thus material behaves as a dipole emitting a Raman-shifted field. The Raman field interacts
with the scatterer and is emitted to the far-field.

SERS was developed to overcome the low efficiency of conventional Raman spectroscopy, as
the very small Raman cross-section of most chemicals results in Raman radiation typically on
the order of 0.001% of the power of the pump signal [1]. In SERS, the chemicals of interest are
placed in the vicinity of a scatterer, typically a surface or collection of nanoparticles, which acts as
an antenna that both concentrates the incoming pump field at the Raman material’s location and
enhances the radiated Stokes signal emitted by the Raman material [14,15], thereby increasing
the collected signal. Charge-transfer mechanisms also lead to a chemical enhancement, although
their contribution is smaller than the electromagnetic enhancement effect [16,17]. Many different
materials and antenna geometries have been used for SERS measurements: metals such as silver,
gold, or copper, and dielectrics such as silicon carbide or indium tin oxide, were implemented
in various shapes such as spheres, triangular prisms, or disks. Several studies have optimized
SERS substrates over one or two parameters [18–22]. Others have used topology optimization
yet only to optimize the concentration of the incident field [23,24]. Efficiencies up to 12 orders of
magnitude larger than that of traditional Raman spectroscopy have been demonstrated, allowing
for detection levels down to the single molecule [4,5] and opening up applications in the fields of
biochemistry, forensics, food safety, threat detection, and medical diagnostics.
However, to the best of our knowledge, no study thus far has looked at the possibility of an

upper limit to the enhancement achievable in SERS, and it is therefore not known whether current
SERS substrates possess much room for improvement. To investigate the existence of such a
bound, a key point is to notice that the process can be decomposed into two linear problems [25]:
concentration of the incident field on the molecule and a dipole emission at the Raman-shifted
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frequency, as is described in more details below. Upper bounds on the power radiated by a
dipole near a scatterer of arbitrary shape were already obtained in [8]. Given only the material
χ, this is an upper limit for the LDOS for any possible geometric shape in a given region of
space near the emitter. The bounding method is based on optimizing the quantity of interest
under energy-conservation constraints, using the fact that extinction (linear in the induced fields)
is larger than absorption (quadratic in the induced fields). This method has been successfully
applied to various other problems [26,27]. Here, we apply this method to obtain a bound on
local field concentration enhancement, again for any possible shape given only the material and
the bounding volume. Combined with the LDOS limit, we then obtain a bound on the Raman
enhancement. We also obtain a second bound for the concentration problem using reciprocity in
the case of a periodic structure (a similar approach was used to derive the Yablonovitch limit for
solar cells from LDOS enhancement [28]). By comparing the two concentration bounds as a
function of period, we obtain a tighter bound for periodic structures.

2. Derivation of bounds

In order to derive a bound on the Raman enhancement, we consider the configuration represented
in the inset of Fig. 1. An incident “pump” planewave Einc is scattered by the nanostructure,
leading to a near-field enhancement. A Raman-active molecule close to the structure then acquires
a dipole moment proportional to the enhanced field, p = αRE where αR is the Hermitian (usually
real-symmetric) Raman polarizability tensor [25]. The power radiated by the dipole in the far
field at the Raman frequency is our quantity of interest and is given by P = |αRE|2Pp where Pp
is the power radiated by a unit-vector dipole p̂ = αRE/|αRE|. Pp can be related to the (electric)

LDOS through ρp =
2ε0n2b
πω2 Pp where nb is the index of the background medium [29]. We note

that typically LDOS is defined as the sum of ρp over three orthogonal directions, so that in our
notation, the background LDOS is equal to ρb = n3bω

2/6π2c3 [30]. The Raman enhancement
(compared to the background) is then:

q =
|αRE|2ρp

‖αR‖2 |Einc |2ρb
, (1)

where ‖.‖ is the induced norm (which gives an upper bound on the magnitude of p̂ for any E
orientation [32]). We see that the enhancement comes from two parts: LDOS enhancement
(qrad = ρp/ρb) and local field enhancement (qloc = |αRE|2/‖αR‖

2 |Einc |
2). To bound the total

efficiency, we need to bound both contributions.

2.1. LDOS enhancement

A bound on LDOS enhancement due to scattering by lossy structures can be obtained starting
from a result of [8]: the maximum LDOS enhancement near a scatterer with susceptibility χ, in
a background with Green’s function G, is given by:

qrad =
ρp

ρb
≤ 1 +

3πn2b
2k3
|χ |2

Imχ

∫
V
|Gp̂|2, (2)

where the integration is carried over the volume of the scatterer and k the wavenumber in the
background medium. Since the direction of p = αRE is also to be optimized, we can then obtain
a bound using:∫

V
|Gp̂|2 = (αRE)†

|αRE|

(∫
V

G†G
)

αRE
|αRE| ≤ |||GUR |||

2 :=
∫

V
UR
†G†GUR

, (3)

where the columns of UR – a 3 × rank(αR) matrix – are the orthonormal principle axes of αR
with non-zero Raman polarizability. If αR is invertible we simply obtain |||G|||2. On the other
hand, if the Raman polarization is along a fixed axis p̂ we obtain |||Gp̂|||2.
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2.2. Local field enhancement

We now obtain a bound on local field concentration by using the same method as in [8] while
working with a suitable figure of merit. This bound applies to scatterers of any shape and scales
with the volume of the scatterer. (The focusing of thin parabolic mirrors and lenses provides
an example of concentration scaling with volume.) For periodic structures, since there is finite
power incident on each unit cell (and a periodic set of foci), we obtain a second bound that scales
as the unit-cell area.

2.2.1. Single-point focusing (volume-scaling bound).

Let x0 be the position of the Raman-active molecule and Esca be the scattered field. For Eq. (1),
we want to bound |αRE(x0)|

2 where E = Esca + Einc is the total field. Recall that the scattered
field is given by Esca(x0) =

∫
V G(x0, x)P where P = χE is the polarization current [33]. As

explained in [8], the fields are subject to:

Im
∫
V

E†P ≤ Im
∫
V

E†incP, (4)

which simply states that absorption is smaller than extinction. For a given unit vector ê,
maximizing |ê†αREsca(x0)|

2 under the constraint (4) is equivalent to:

max
P
〈P,AP〉 subject to 〈P,P〉 ≤ αRe〈b,P〉, (5)

where α = |χ |2/Imχ, AP = 〈a,P〉a, a = G∗αRê, b = iEinc and 〈X,Y〉 =
∫
V X†Y. Straight-

forward variational calculus allows us to solve the optimization problem, yielding [34,35]
[Appendix-B]:

|ê†αREsca(x0)|
2 ≤

|χ |4

Im2 χ
V |Einc |

2
∫
V
|G∗αRê|2 . (6)

Abound on the norm of αREsca is then obtained similarly to the LDOS result. A simpler bound can
be obtained using a spectral decomposition αR = URdRUR

† where dR is a rank(αR) × rank(αR)

diagonal matrix with entries equal to the nonzero eigenvalues of αR. In particular, for ê in the
column space of αR, we have:∫

V
|G∗αRê|2 ≤ |||G∗αRUR |||

2
= |||G∗URdR |||

2
≤ |||G∗UR |||

2
‖dR‖

2 =
������GU∗R

������2‖αR‖
2 . (7)

We then conclude by the triangle inequality [32]:

qloc ≤

(
1 +
|χ |2

Imχ

������GU∗R
������√V)2

. (8)

For large enhancement (qloc � 1), the bound is simply given by the second term squared and the
material’s figure of merit for the concentration bound is the square of the usual factor |χ |2/Imχ
from previous works [8]. Essentially, this arises because concentration involves coupling to two
electromagnetic waves: the incoming planewave and the dipole field. The usual material’s metric
thus comes into play two times. This also explains the presence of the volume of the scatterer
(from the coupling with the planewave), and of the integral of the Green’s function (from the
coupling with the dipole). Identical scalings are also found in the exact results for a quasistatic
plasmonic sphere [Appendix-E].



Research Article Vol. 27, No. 24 / 25 November 2019 / Optics Express 35193

2.2.2. Periodic-array focusing (area-scaling bound).

In practice, wafer-scale microfabrication techniques favor the manufacturing of repeating patterns
over large areas rather than single, isolated structures. Moreover, periodic structures may offer
increased SERS performances thanks to interference effects. While the previous bound is still
valid for periodic structures by using the periodic Green’s function, we can also use reciprocity
to relate the local field enhancement to LDOS enhancement and obtain a bound that scales
as the surface area of the unit cell. We consider a “2d-periodic” structure with lattice vectors
perpendicular to ẑ and a unit cell with surface area S. We consider both the scattering problem
with an incident wavevector k0 and an amplitude Einc and the reciprocal emission problem
formed by a dipole placed at x0 with dipole moment p̂ = (αRê)∗/|αRê| where ê is an arbitrary
unit vector. This emission problem is −k0‖ Bloch-periodic and the radiated far-field can then be
decomposed into planewaves with Bloch wavevectors knm and amplitudes Tp

nm. Using the same
method as in [28], we can relate the near field of the scattering problem E(x0) to the far-field
component Tp

00 along −k0 in the emission problem through [Appendix-C]:

ê†αRE(x0)

|αRê| = p̂ · E(x0) =
2iε0S cos θ

k
Tp
00 · Einc, (9)

where θ is the polar angle (cos θ = k̂0 · ẑ). Using this relation, we can now bound the amplitude
of αRE using:

|ê†αRE(x0)|
2

‖αR‖2 |Einc |2
≤

4S2ε20 cos2 θ
k2

|Tp
00 |

2 ≤
4S2ε20 cos θ

k2
∑
nm
|Tp

nm |
2 knm, z
ωµ0

ωµ0
k

=
4Sε20 cos θ

k2
ωµ0
k

Re
∫
S+∞

Ep ×Hp∗ · ẑ dS ≤ 8Sε20 cos θ
ωµ0

k3
Pp,

(10)

where we recall that Pp is the total power radiated by the dipole p̂. The first inequality is based on
Cauchy-Schwartz [32] while the second one states that the power emitted along −k0 (∝ |Tp

00 |
2)

is smaller than the total power emitted in the +ẑ direction, which is then smaller than the total
radiated power Pp. The inequalities used in Eq. (10) will be tight (equalities) if ω is smaller than
the first-order diffraction frequency (so that all the power is in Tp

00 [36]) and in the absence of
radiated field in the opposite direction (the structure should completely “block” the unit-cell’s
surface). Now using the previous LDOS bound (Eqs. (2)–(3)), we conclude:

qloc ≤
2Sk2 cos θ

3πn4b

[
1 +

3πn2b
2k3
|χ |2

Imχ

������GperU∗R
������2] , (11)

where Gper is the free-space Bloch-periodic Green’s function.

2.3. Raman enhancement

The bound for the Raman enhancement q = qloc(ωP)qrad(ωR) is now simply obtained by
multiplying the previous bounds (Eqs. (2)–(3) and Eq. (8)):

q ≤

(
1 +
|χp |

2

Imχp

������GpU∗R
������√V)2 (

1 +
3πn2b
2k3r

|χr |
2

Imχr
|||GrUR |||

2

)
≈

3πn2b
2k3r

|χr |
2

Imχr

(
|χp |

2

Imχp

)2
V |||GrUR |||

2������GpU∗R
������2 (12)

where the subscripts p and r denote the pump and Raman frequencies at which the variables are
evaluated. The second expression is obtained in the case of large enhancement. Also recall that
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[33] (with k0 being the free-space wavenumber):

G†G =
(

k40
16π2r2

) [(
1 −

1
(kr)2

+
1
(kr)4

)
1 +

(
−1 +

5
(kr)2

+
3
(kr)4

)
r̂r̂†

]
. (13)

If we now assume that the tensor αR is isotropic and consider simple structures enclosing
the scatterer and separated from the Raman-active molecule by a small distance d, we obtain
analytical bounds by considering the lowest order term in d and neglecting far-field terms:

q .
3π
2n6b

β2
V

k3rd6
|χr |

2

Imχr

(
|χp |

2

Imχp

)2
, (14)

where β is a geometrical factor equal to 1/6π for a full sphere, 1/12π for a half-sphere, and
1/32π for a half-plane [Appendix-D]. This fundamental limit scales as V/d6 (compared to 1/d3
for LDOS). 1/d6 is related to both the radiation of the dipole and the coupling to it, while V is
due to the planewave coupling. In practice, the Raman frequency shift is small enough so that
the bounds do not change much when the expressions are simply evaluated at the same (pump or
Raman) frequency. In this case, the bound is simply proportional to

(
|χ |2/Imχ

)3. This material
figure of merit can be used to compare the optimal performance of different materials and is
shown in Fig. 1. We note that silver (Ag) has the highest bound at visible wavelengths but is
outperformed by aluminum (Al) in the near-UV region.
The bound of Eq. (12) is also valid for a periodic structure after substituting the appropriate

periodicGreen’s function, which can be integrated numerically, for the concentration enhancement
term (Raman molecules emit incoherently, so the radiation enhancement is not periodic). Near-
field coupling from adjacent unit cells causes the periodic Green’s function to increase as the
period shrinks so that the maximal bound is obtained for the smallest possible period. However,
comparison with the area-scaling bound obtained using Eq. (11) shows that this bound isn’t tight
for small periods. For strong scattering and emission, this area-scaling bound is given by:

q .
3πS cos θ
2kpk3r

|χp |
2

Imχp

|χr |
2

Imχr

������Gper
p U∗R

������2 |||GrUR |||
2 . (15)

By neglecting the Raman frequency shift, this new bound is now proportional to
(
|χ |2/Imχ

)2
and scales as the surface area of the unit cell instead of the volume of the scatterer. We can
actually see that this area-scaling limit is the same as the volume-scaling one (Eq. (12)) when
using an effective volume equal to:

Veff =
S cos θ
kpn2b

Imχp

|χp |2
. (16)

This area-scaling bound highlights the fact that for a periodic structure, only a fraction of the
actual volume of the scatterer (proportional to the projected unit-cell area) is effectively “used” in
the scattering. As explained in more detail below, combining the volume-scaling and area-scaling
bounds leads to a tighter bound with different behavior as a function of the period.

3. Geometric results

The performance of specific structures, assuming an isotropic Raman tensor αR and a background
medium of air, was evaluated using scuff-em, an open-source implementation of the boundary-
element method [37,38]. Two simulations were performed for each structure: a scattering
simulation to evaluate the field concentration at the Raman material’s location, and an emission
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simulation to evaluate the radiative LDOS [Appendix-F]. The actual performance of each structure
can then be compared to its volume-specific bound by carrying the integration over the volume
of the structure (in the expression of |||Gr |||

2 in Eq. (12)), and to a shape-independent bound by
carrying the integration over simple geometric structures encompassing the structure (Eq. (14)).

3.1. Isolated structures

We simulated two of the most common nanostructures used in SERS: triangular prisms used in
a bowtie configuration, and a sphere. A sphere has polarizability α = 3(ε − 1)/(ε + 2) in the
electrostatic limit [39], which permits analytical calculation of the concentrated field at resonance
(Re(χ−1) = −1/3) [Appendix-E]:

|Esca |
2 =

1
4π2

1
(d + R)6

(
|χ |2

Im χ

)2
V2 |Einc |

2, (17)

with R the radius and d the distance to the emitter. This analytical expression includes all the same
factors as our concentration bound (Eq. (8)). By computing |||Gr |||

2, we find that the sphere’s
enhancement reaches the bound in the limit R � d � λ [Appendix-E]. We selected a radius of
10 nm and a distance of 20 nm. While in practice molecules are located at various distances
from the scatterer, with smaller separation distances yielding a higher absolute enhancement,
20 nm corresponds to the maximum performance-to-bound ratio for the selected sphere radius
[Appendix-E]. All simulated structures were made of silver, which is the best-performing Raman
material at visible frequencies (Fig. 1) and also satisfies the resonance condition for χ, unlike
e.g. gold. The geometry of the triangles was taken from [40], with a gap set at 40 nm to readily
compare with the sphere results. We included a shape-independent bound by considering the
exterior of a spherical shell (entire space minus a sphere of radius d), and using the largest volume
of all structures, that of the 4-triangle bowtie. The results in Fig. 2 show that all structures fall
short of the shape-independent bound by several orders of magnitude. The performances of

Fig. 2. Raman enhancement bounds (dashed lines) and actual performances (full lines) for
common SERS Ag structures. The distance to the emitter is d = 20 nm for all structures.
The sphere has a radius of 10 nm. The triangles have a side of 160 nm, height of 30 nm, and
tip curvature of 16 nm. The incident field’s polarization is aligned with the sphere-emitter
and triangle-emitter direction.
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bowties also lie far from their shape-specific limits. Only the sphere approaches its bound, at
frequencies greater than the plasma frequency of silver.
Finally, it is worth noting that smaller structures get easily closer to the bound compared to

larger structures. In the example of the electrostatic sphere, one notices that the ratio of its
performance to the bound goes to zero as the radius R increases for a fixed d [Appendix-E]. While
both the bound and the actual performance increase with the volume, further shape optimization
is required to get closer to the limits for large structures.

3.2. Periodic structures

To investigate the potential enhancement due to periodicity, we compared the bounds for a single
sphere and for a square lattice of similar spheres. We have seen that our Raman limit can be
applied to periodic structures by using either of our two bounds on the near-field enhancement:
Eq. (8) with the corresponding periodic Green’s function, or Eq. (11). We thus only needed to
compare the near-field enhancement bounds (Fig. 3). The two approaches for the periodic bound
yield different geometrical dependencies. The limit of Eq. (8) scales with the volume of the
scatterer, kept constant here, and the integral of the periodic Green’s function, which decreases
towards the non-periodic value as the period increases. The integral of the periodic Green’s
function also appears in the limit of Eq. (11), yet alongside a factor scaling as the area of the
unit cell which reduces the bound for small periods. These behaviors, expected to hold for any
scatterer, are indeed observed in Fig. 3 for arrays of spheres. The actual limit is given by the
smaller of the two bounds resulting in different regions in the graph as the period is varied. For
periods larger than that of point P (given by Eq. (16) for large enhancement), the volume-scaling
bound is limiting because of the reduced interactions between the scatterers of the array. For

Fig. 3. Near-field enhancement bounds for an isolated Ag sphere (bottom right schematics)
and a square array of Ag spheres with varying period a (top right schematics). The shaded
region indicates forbidden field-concentration values for the periodic case. The spheres have
a radius R = 12 nm, and the emitter is located d = 20 nm away from their surface along the
lattice axis. The incident field’s polarization is aligned with the sphere-emitter direction and
λ = 350 nm. In the large-enhancement limit, the area-scaling and volume-scaling bounds
always intersect at a point, denoted P, where the period equals

√
kp[V |χ |2/[Imχ cos θ].

Inset: map of the position of points P, Q, and Q’ as a function of sphere radius and lattice
period, for d = 20 nm.
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smaller periods, the performance of the array is limited by the area-scaling bound since the
intensity received by each sphere is reduced. Between points Q and Q’, this causes the periodic
limit to be smaller than the single-sphere limit. Maximum enhancement due to periodicity is still
to be found at the smallest possible period, where increased interactions between the scatterers
dominate the decrease in incident intensity received by each unit cell.

4. Concluding remarks

The upper bounds presented in this paper allow a simple estimate of optimal Raman enhancement
for arbitrary scatterers. The results show that there is still much room for improvement for
large scatterers through further shape optimization. Our analysis of periodic bounds shows the
presence of different optimality regions as function of periodicity. While the use of an array can
lead to a worse performance for intermediate values of the period, improvement may be still
expected for very small periods.

Appendix A. Bound for a randomly oriented Raman molecule

We use 〈.〉 to denote the average over a random orientation of the Raman molecule. We can
obtain a bound using:

〈q〉 ≤

(
1 +

3πn2b
2k3r

|χr |
2

Imχr
|||Gr |||

2

)
〈qloc〉 =

(
1 +

3πn2b
2k3r

|χr |
2

Imχr
|||Gr |||

2

)
tr(α†RαR)|E|

2/3
‖αR‖2 |Einc |2

≤
tr(α†RαR)
3‖αR‖2

(
1 +

3πn2b
2k3r

|χr |
2

Imχr
|||Gr |||

2

) (
1 +
|χp |

2

Imχp

������Gp
������√V)2 (18)

Appendix B. Volume-scaling bound

We want maximize |ê†αREsca(x0)|
2 = |(αRê)†Esca(x0)|

2 which is equivalent to the following
convex quadratic optimization problem:

max
P
〈P,AP〉 subject to 〈P,P〉 ≤ αRe〈b,P〉, (19)

where α = |χ |2/Imχ, AP = 〈a,P〉a, a = G∗αRê, b = iEinc and 〈X,Y〉 =
∫
V X†Y.

The optimum of Eq. (19) must satisy the KKT conditions [34,35]:

AP + λ(P − α
2

b) = 0,

〈P,P〉 − αRe〈b,P〉 = 0,
(20)

where λ = − 〈a,P〉β . The first equation can be written as P = α
2 b − 1

λ 〈a,P〉a =
α
2 b + β

2 a. The
second equation then leads to |β | |a| = α |b|. Since λ ∈ R, then 〈a,b〉β ∈ R. From this we have
β = ±α |b | 〈a,b〉

|a | | 〈a,b〉 | . We finally conclude that the optimal value of 〈P,AP〉 is equal to:

α2

4
(|〈a,b〉| + |a| |b|)2 ≤ α2 |a|2 |b|2 . (21)

If we plug in the physical quantities, we get:

|ê†αREsca(x0)|
2 ≤

(
|χ |2

Imχ

)2 ∫
V
|Einc |

2
∫
V
|G∗αRê|2 . (22)
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Appendix C. Reciprocity relation

We study a 2d-periodic structure with unit-cell surface area S and (b1,b2) the reciprocal
lattice vectors orthogonal to ẑ[36]. We consider the scattering (resp. emission) problem with
Es

inc = eik0 ·xEinc (resp. j = −iωδx0 ê, with −k0‖ Bloch boundary-conditions). We can write the
outgoing fields in the far field as:

Ee, s
out =

∑
n, m

Te, s
nm eix·k

e, s
nm êe, snm , He, s

out = −
∑
n, m

Te, s
nm eix·k

e, s
nm

ke, s
nm × êe, snm
ωµ0

, (23)

where |ke, s
nm | = k, ks, e

‖
= ±(k0‖ + nb1 +mb2) and êe, snm · ke, s

nm = 0. We take k0z ≥ 0 (with knm, z ≥ 0
for z > 0 and knm, z ≤ 0 for z < 0).
From reciprocity, we have:∫

S
(Es ×Hs − Ee ×Hs) · n̂dS = iω ê · Es(x0), (24)

where Es and Ee are the total fields (Es = Es
out + Ee

inc and Ee = Ee
out).

The integration around the lateral boundary is cancelled due to boundary conditions. We now
compute the surface integral in the far-field. For |z| large enough, we integrate over the cross
section Sz:

ωµ0

∫
Sz

Ee
out ×Hs

out · ŝdS = −
∑

n, m, k, l

∫
Sz
Te
n, mT

s
k, le

ix·(ke
nm+ks

kl) êe
nm × (ks

kl × ês
kl) · ẑ dS

= S
∑
nm

Te
n, mT

s
n, me

−2iknm, zz
[
(êe

nm · ês
nm)ks

nm − (êe
nm · ks

nm)ês
nm

]
· ẑ

= S
∑
nm

Te
n, mT

s
n, mknm, ze−2iknm, zz

[
(êe

nm · ês
nm) − 2(ês

nm · ẑ)(êe
nm · ẑ)

]
= ωµ0

∫
Sz

Ee
out ×He

out · ŝdS .

(25)
The last equality comes from the symmetry of the equation with respect to e/s, and the second to
last comes from ks

nm = knm, zẑ − (ke
nm − knm, zẑ).

For z < 0, we also have:

ωµ0

∫
Sz

Ee
out ×Hs

inc · ẑ dS = STe
00[k0, zê

e
00 · Einc −����

(êe
00 · k0)(Einc · ẑ)]

= STe
00k0, zê

e
00Einc .

(26)

Similarly, we find
∫
Sz

Es
inc ×He

out · ẑ = −
∫
Sz

Ee
out ×Hs

inc · ẑ. On the other hand,∫
S−z

Es
inc ×He

out · ẑ =
∫
S−z

Ee
out ×Hs

inc · ẑ = STe
00k0zê

e
00 · [Einc − 2(Einc · ẑ)ẑ]e2ik0zz . (27)

By replacing all integrals in Eq. (24), we conclude

ê · Es(x0) =
2iSε0
k

Te
00 · Einc cos θ

where we noted Te
00 = Te

00ê
e
00 and θ the incidence angle with respect to ẑ. This equation simply

relates the field’s component ê · Es(x0) due to an incident plane wave eik0 ·xEinc to the far-field
component along −k0 of the field created by a unit vector dipole ê placed at x0 (where the
problem in the unit-cell is −k0‖ Bloch-periodic).
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Appendix D. Induced norm of the integral of the Green’s function

Recall that:

G =
k20e

ikr

4πr

[(
1 +

i
kr
−

1
(kr)2

)
1 +

(
−1 −

3i
kr
+

3
(kr)2

)
r̂r̂+

]
, (28)

so that:

G†G =
k40

16π2r2

[(
1 −

1
(kr)2

+
1
(kr)4

)
1 +

(
−1 +

5
(kr)2

+
3
(kr)4

)
r̂r̂†

]
= a(r)1 + b(r)r̂r̂† . (29)

If the structure has two mirror symmetry planes orthogonal to x̂, ŷ or ẑ, the non-diagonal terms
of

∫
V G†G are zero, and we obtain:

|||G|||2 = ‖
∫
V

G†G‖ =
∫
V
a(r) +max

j

∫
V
b(r)

x2j
r2

. (30)

We can obtain finite analytical expression by integrating over simple geometries and only
considering the near-field terms (∝ 1/r6). For spherical shell of polar angle θ separated from the
Raman molecule by a small distance d, we have:∫

V

dV
r6
=

2π(1 − cos θ)
3d3

,
∫
V

dV
r6

z2

r2
=

2π(1 − cos3 θ)
9d3

,
∫
V

dV
r6

x2

r2
=
π(8 − 9 cos θ + cos 3θ)

36d3
.

(31)
So |||G|||2n4b is equal to:

1
24πd3

(
2 − cos θ − cos3 θ

) [
0 ≤ θ ≤

π

2

]
,

1
192πd3

(16 − 17 cos θ + cos 3θ)
[ π
2
≤ θ ≤ π

]
.
(32)

For a half-plane, we have:∫
V

dV
r6
=

π

6d3
,
∫
V

dV
r6

z2

r2
=

π

9d3
,
∫
V

dV
r6

x2

r2
=

π

36d3
, (33)

so that |||G|||2n4b = 1/32πd3.

Appendix E. Concentration enhancement for a plasmonic sphere

In the quasistatic limit, a plane wave with amplitude Einc incident upon a sphere excites a dipole
moment:

p = αVEinc, (34)

where the polarizability α is given by:

α =
3(ε − 1)
ε + 2

=
1

1/3 + χ−1
. (35)

On resonance Reχ−1 = − 1
3 , such that:

αmax =
1

Imχ−1
=
|χ |2

Imχ
. (36)

The field at a distance d from the sphere of radius R is given by:

Esca =
1
4π

[
3n̂(n̂ · p) − p
(d + R)3

]
, (37)
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where n̂ is the unit vector along the line from the dipole to the measurement point. The amplitude
of the field is maximum when n̂ is along p giving:

Esca =
p

2π(d + R)3
. (38)

Putting all this together, the maximum field concentration outside the sphere at the plasmon
frequency is given by:

|Esca |
2 =

1
4π2

1
(d + R)6

(
|χ |2

Imχ

)2
V2 |Einc |

2 . (39)

This analytical expression includes all the same factors as our bound on the concentrated field,
with |||Gr |||

2 to be compared to the factor V/4π2(d + R)6.

Fig. 4. Ratio of the analytical value of of |Escat |2 given by Eq. (39) to the volume-scaling
bound given by Eq. (8), for Ag spheres of different radii at the resonant frequency of Ag.
Inset: Comparison of the analytical value (full lines) and the bound (dashed lines) for the
same Ag spheres.

We can easily check that the performance of the sphere reaches the bound in the limit of small
radius, in particular we can use:

1
(d + R)6

≤
1
r6
≤

1
(d − R)6

,
x2

r2
≤

R2

(d − R)2
,
y2

r2
≤

R2

(d − R)2
,
(d − R)2

(d + R)2
≤

z2

r2
≤ 1, (40)

where z is the coordinate along the axis relating the sphere’s center and the molecule. We then
obtain:

1
V

∫
V

dV
r6
−−−−→
R→0

1
d6

,
1
V

∫
V

x2dV
r8
−−−−→
R→0

0,
1
V

∫
V

y2dV
r8
−−−−→
R→0

0,
1
V

∫
V

z2dV
r8
−−−−→
R→0

1
d6

. (41)

We then conclude that |||Gr |||
2 ≈ V/4π2d6 for R � d and that the dipole-sphere performance

reaches the upper bound in this limit, as seen on Fig. 4.
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Appendix F. Concentration and LDOS results for the sphere

The performance of each structure was evaluated using two simulations: a scattering simulation
to obtain the field concentration at the Raman material’s location (Fig. 5(a)), and an emission
simulation to obtain the radiative LDOS (Fig. 5(b)).

Fig. 5. Simulation results and corresponding bounds for a Ag sphere of radius 10 nm and
distance to emitter 20 nm. (a) Near-field enhancement with bound from main text. (b) LDOS
with bound from [8].
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