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Abstract: By computational optimization of air-void cavities in metallic substrates, we show
that the local density of states (LDOS) can reach within a factor of ≈10 of recent theoretical
upper limits and within a factor ≈4 for the single-polarization LDOS, demonstrating that the
theoretical limits are nearly attainable. Optimizing the total LDOS results in a spontaneous
symmetry breaking where it is preferable to couple to a specific polarization. Moreover, simple
shapes such as optimized cylinders attain nearly the performance of complicated many-parameter
optima, suggesting that only one or two key parameters matter in order to approach the theoretical
LDOS bounds for metallic resonators.
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1. Introduction

Recently, we obtained theoretical upper bounds [1] to the (electric) local density of states
(LDOS) ρ(x,ω), a key figure of merit for light–matter interactions (e.g. spontaneous emission)
proportional to the power emitted by a dipole current at a position x and frequency ω [2–10].
For a resonant cavity with quality factor Q (a dimensionless lifetime), LDOS is proportional
to the “Purcell factor” Q/V where V is a modal volume [6,11], so LDOS is a measure of light
localization in space and time. Our LDOS bounds ∼ |χ |2/Im χ/d3 (reviewed in Sec. 2) depend
on the material used (described by the ω-dependent susceptibility χ = ε − 1) and the minimum
separation d between the emitter and the material, but are otherwise independent of shape,
and hence give an upper limit to the localization attainable by any possible resonant cavity for
(χ, d,ω). However, it is an open question to what extent these bounds are tight, i.e. is there
any particular cavity design that comes close to the bounds? Initial investigations of a few
simple resonant structures were often orders of magnitude from the upper bounds (except at the
surface-plasmon wavelength for a given metal) [1,12,13]. In this paper, we perform computational
optimization of 3D metallic cavities at many wavelengths and find that the bounds are much
more nearly attainable than was previously known.

In particular, we perform many-parameter shape optimization of LDOS for cavities formed by
voids in silver (since it has the largest |χ |2/Im χ, and therefore the largest bounds) at wavelengths
λ from 400–900 nm and a d = 50 nm emitter–metal separation, depicted in Fig. 1. As described
in Sec. 4, we obtain single-polarization LDOS values within a factor of ≈ 4 of the theoretical
upper bounds, and total (all-polarization) LDOS within a factor of ≈ 10 of the bounds. Of
course, real cavities would have a finite thickness of metal, but our goal is to attain the maximum
possible LDOS—we find that a finite-thickness coating has slightly worse performance, but
>95% of the LDOS of the infinite metal is attained by ≈ 100 nm thickness at λ = 500 nm, and
more generally we can theoretically bound [1] the improvement attainable with any additional
structure of air voids outside of our cavity. Although our focus is on fundamental upper limits
rather than manufacturable cavities, we find that simple shapes (optimized cylinders) are within

#397502 https://doi.org/10.1364/OE.397502
Journal © 2020 Received 11 May 2020; revised 17 Jun 2020; accepted 18 Jun 2020; published 31 Jul 2020

https://orcid.org/0000-0003-2745-2392
https://doi.org/10.1364/OA_License_v1


Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 24186

≈ 20% of the LDOS of optimized many-parameter irregular shapes, analogous to results we
obtained previously for optimized scattering and absorption [1]. (Our optimized cavities are
deeply subwavelength along their shortest axes, very different from the non-plasmonic resonant
regime where the diameter is much larger than the skin depth so that the walls simply act as
mirrors.) Moreover, we find that optimizing for a single emitter polarization (the “polarized”
LDOS) does nearly as well (within ≈ 10%) as optimizing the total LDOS (power summed
over all emitter polarizations), reminiscent of earlier results in 2D dielectric cavities where
LDOS optimization arbitrarily picked one polarization to enhance [14]. We perform the shape
optimization using an efficient boundary-element method [15,16] (which has unknowns only on
the metal surface) coupled with adjoint sensitivity analysis [17,18] and an optimization algorithm
robust to discretization errors [19] as described in Sec. 3. Although it is possible that even tighter
LDOS bounds could be obtained in future results by incorporating additional physical constraints
[20–23], we believe that our results show that the existing bounds are already closely related to
attainable performance and provide useful guidance for optical cavity design.

Fig. 1. Schematic cavity-optimization problem: the shape of an air cavity in a metallic
(silver) background is optimized to maximize the LDOS for emitters (dipoles) at the center
o, constrained for a minimum separation d (the metal lies outside of a sphere of radius d).

In this work, we optimize the total electric LDOS, which is the sum of the absorbed and
radiated powers from electric dipoles (Sec. 2) for comparison with the upper bounds, and in fact
the power is entirely absorbed for an air-void cavity as in Fig. 1. However, the same theoretical
procedure yielded a bound on the purely radiative power that was simply 1/4 of the total-LDOS
bound [1], and in fact the two results are closely related. In general, the addition of low-loss
input/output channels can be analyzed via coupled-mode theory as small perturbations to existing
cavity designs [24]. As reviewed in Appendix E, given an resonant absorptive cavity, one
could modify it to radiate at most ≈ 1/4 of the original LDOS by slightly perturbing it to add a
radiative-escape channel (e.g. a small hole or thinning in the cavity wall) tuned to match the
absorption-loss rate [25,26]. (The same channel could also be used to introduce input energy, e.g.
for pumping an emitter.) Appendix D shows an example of this: by thinning the cavity walls, we
achieve radiated power ≈ 1/4 of the absorbed power in the purely absorbing cavity.
Many previous authors have computationally optimized the LDOS of cavities (or equivalent

quantities such as the Purcell factor Q/V), including many-parameter shape or “topology”
optimization [27–32], but in most cases these works did not compare to the recent upper bounds.
In many cases, these works studied lossless dielectric materials where the bound diverges (though
a finite LDOS is obtained for a finite volume [14,33] and/or a finite bandwidth [13,14]). Designs
specifically for LDOS of metallic resonators that compared to the bounds initially yielded results
far below the bounds except for the special case of a planar surface at the surface-plasmon
frequency of the material [1,34], but recent topology optimization in two dimensions came within
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a factor of 10 of the 2D bound [33]. Semi-analytical calculations have also been published for
resonant modes in spherical metallic voids [35], but did not calculate LDOS. Therefore, the
opportunity remains for optimized metallic LDOS designs in three dimensions that approach
the theoretical upper bounds. To come as close as possible to the bounds, we focus initially on
the idealized case of an air void surrounded by metal filling the rest of space, so that there are
no radiation losses; later in this paper, we consider the small corrections that arise due to finite
metal thickness.

2. Local density of states (LDOS)

The (electric) LDOS is equivalent to the total power expended by three orthogonal dipole currents
[2]:

ρ = Im

ε0
πω

3∑
j=1

ŝj · Ej(x0)
 , (1)

where ε0 is the vacuum electric permittivity, Ej denotes the field produced by a frequency-ω unit-
dipole source at x0 polarized in the ŝj direction, and the sum over j accounts for all three possible
dipole orientations. This is equivalent to the average response for any dipole orientation [36],
and is therefore an isotropic figure of merit. In contrast, we refer to the power Im[ ε0πω ŝj · Ej(x0)]
expended by only a single dipole current as the “polarized” LDOS.
From energy-conservation considerations, previous work found an upper bound for LDOS

enhancement inside a cavity compared to vacuum electric LDOS (ρ0 = ω2/2π2c3 [7]), given any
a material susceptibility χ and an emitter–material separation d at a frequency ω = ck, to be [1]:

ρ

ρ0
≤ 1 +

|χ(ω)|2

Im χ(ω)

[
1
(kd)3

+
1
kd

]
. (2)

The details of this bound are reviewed in Appendix A. Two details in Eq. (2) require some
comment. First, the bounding surface lying between the dipole source and the material for Eq. (2)
is a sphere of radius d around the source (Fig. 1). If the bounding surface is a separating plane,
there would be a factor of 1/8 multiplying the |χ |2/Im χ term as well as a small modification to
the 1/kd term [1]. Second, the separation distance should be small compared to the wavelength,
otherwise a third term O(kL) can have non-negligible contribution to the bound (also discussed
in Appendix C). Finally, the polarized LDOS limit is 1/3 of the total limit in Eq. (2) for the same
spherical bounding surface.
It is important to emphasize that the derivation of Eq. (2) gives a rigorous upper bound to

the LDOS, but does not say what structure (if any) achieves the bound. By actually solving
Maxwell’s equations for various geometries, we can investigate how closely the bound can be
approached (how “tight” the bound is). It is possible that incorporating additional constraints
may lead to tighter bounds in the future [20–23], but our results below already show that Eq. (2)
is achievable within an order of magnitude.

3. Cavity-optimization methods

To numerically compute the LDOS inside a metal cavity, we employed a free-software imple-
mentation [16] of the boundary element method (BEM) [15]. A BEM formulation only involves
unknown tangential fields on the metal surface, leading to modest-size computations for 3D
metallic voids (Fig. 1). The complex dielectric constant of silver was interpolated from tabulated
data [37]. In addition, we implemented an adjoint method [17,18] to rapidly obtain the gradient
of the LDOS with respect to the shape parameters described below. As reviewed in Appendix B,
the gradient of LDOS with respect to all shape parameters simultaneously is obtained by the
adjoint method using only two BEM simulations—the original problem and an adjoint problem
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(the same Maxwell problem with artificial “adjoint” sources). Since the adjoint problem is
the same Maxwell/BEM operator, we need only form and factorize the BEM matrix a single
time, and the computational cost to solve both the forward and adjoint problems is essentially
equivalent to a single simulation. Validation against a semi-analytical solution for spheres [35] is
discussed in Appendix C.
In order to parameterize an arbitrary cavity shape numerically, we use a level-set description

[38,39], combined with a free-software surface-mesh generator CGAL [40,41]. In particular,
we describe the radius of the cavity around the source point by a function R(θ, φ) (in spherical
coordinates), which is expanded below in either spherical harmonics or other polynomials,
and equivalently pass a level-set function Φ = r − R(θ, φ) to CGAL (such that Φ = 0 defines
the surface). We considered various parameterizations of the shape function R. The simplest
geometries considered were ellipsoids, cylinders, or rectangular boxes, described by two or three
parameters. For many-parameter optimization with a minimum radius (separation) d, the function
R is expressed as an expansion in some basis functions Sn(θ, φ) as:

R(θ, φ) = d +

����� N∑
n=0

cnSn(θ, φ)

�����2 . (3)

For the basis functions Sn, we used either spherical harmonicsY`m(θ, φ) (for arbitrary asymmetrical
“star-shaped” cavities) or simple polynomials in θ (to impose azimuthal symmetry round the z
axis and a z = 0 mirror plane):

Sn(θ, φ) =

θn θ ≤ π

2 ,

(π − θ)n θ> π
2 .

(4)

The level set is discretized for BEM (by the CGAL software) into a triangular surface mesh. We
used 5× greater resolution for surface points closer to the dipole source (radius . 70 nm), since
the singularity of the fields at the source point leads to rapid variations nearby, for around 5000
triangles overall. As we deformed the shape during optimization, we first deform the triangles
smoothly as long as all angles remained between 30◦ and 120◦, after which point we triggered a
re-meshing step. Unfortunately, re-meshing causes slight discontinuities in the objective function
and its derivatives which tend to confuse optimization algorithms expecting completely smooth
functions [42]. We tried various optimization algorithms designed to be robust to such “numerical
noise” [19,43], and found that the Adam stochastic-optimization algorithm [19] seems to work
best for our problem.

4. Cavity-optimization results

4.1. Total LDOS

We performed numerical shape optimization of the LDOS for cavities formed by voids in silver
[37] at wavelengths λ from 400–900 nm, for both simple geometries (cylinder, ellipsoid, and
rectangular box) and complex many-parameter shape (spherical harmonics). To obtain a finite
optimum LDOS, one must choose a lower bound on the emitter–metal separation distance d [1].
We chose d = 50 nm so that kd<1 for all optimized wavelengths; this allows us to use Eq. (2) as
the LDOS upper bound, neglecting additional far-field effects [1] (see also Appendix A), while
a much smaller d was inconvenient to model (due to extremely small feature sizes and even
nonlocal effects [44] at such scales). Note that d also sets a lengthscale for the region of the
cavity with maximum LDOS: as long as one shifts the emitter location by� d (. 10 nm), the
optimized LDOS will be of the similar magnitude, but other (unoptimized) locations in the cavity
will typically have a drastically different LDOS.
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The results of the optimized LDOS as a function of the wavelength are displayed in Fig. 2(a).
Note that each wavelength corresponds to a different structure optimized for that particular
wavelength. If we fix the structure as the one optimized for λ = 500 nm, the resulting LDOS
spectrum is shown in Fig. 2(b), exhibiting a peak at the optimized wavelength. For simple
shapes (cylinder and ellipsoid), we swept the parameters through a large range and found the
global optimum among several local optima. We also optimized rectangular boxes, but their
performance was nearly identical to that of the cylinders (but slightly worse), so they are not
shown. For the 16-parameter (spherical-harmonic) level-set optimization, we performed local
optimization for ∼ 10 random starting points and plotted the best result along with a few other
typical local optima.

Fig. 2. (a) Total LDOS optima as a function of the wavelength λ for a minimum separation
d = 50 nm, along with the upper bound (black line). A separately optimized structure is
used for each wavelength, either optimized cylinders (orange line) and ellipsoids (green line)
or general shape optimization via the optimized spherical-harmonic (SH) surfaces (blue
dots) of Eq. (3). Several SH local optima are shown for each λ, whereas for cylinders and
ellipsoids only the global optima are shown. (b) LDOS spectra of the spherical-harmonic
(blue) and cylinder (orange) structures optimized for λ = 500 nm, the the shapes (not to
scale) inset (see supplementary Visualization 1 and Visualization 2 for 3D views). Also
shown is the total-LDOS spectrum of a polynomial shape (dashed blue line) optimized for
the polarized LDOS in Sec. 4.2, showing that optimizing for a single dipole orientation
(polarized LDOS) is nearly equivalent in performance to optimizing for all orientations (total
LDOS).

We found that the optimized LDOS comes within a factor of 10 of the upper bound in the
short-wavelength regions (λ<550 nm), and the optimized cylinders are surprisingly good (within
≈ 20% of the many-parameter optima). The optimized cavity geometries at λ = 500 nm are
shown in the inset of Fig. 2(b). We can see that the optimized many-parameter shape has a
three-fold rotational symmetry around one axis; consequently, it has equal polarized LDOS in two
directions but ∼ 100× smaller polarized LDOS in the third direction. The spherical-harmonic
basis is unitarily invariant under rotations, so this means that the optimization of the total LDOS
(an isotropic figure of merit) exhibits a spontaneous symmetry breaking: it chooses two directions
to improve at the expense of the third. For the optimized cylinder and ellipsoid, the polarized
LDOS is only large for one polarization (along the cylinder axis, the “short” axis). A similar
spontaneous symmetry breaking was observed for optimization of LDOS in two dimensions
[14], as well as in saturating the upper bounds for scattering and absorption [1,45] (where it was
related to quasi-static sum rules constraining polarizability resonances [45]).

https://doi.org/10.6084/m9.figshare.12486338
https://doi.org/10.6084/m9.figshare.12486341
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As discussed below, we found that we could approach the polarized LDOS bound at λ = 500 nm
within a factor of ∼ 3 for a single dipole orientation; the fact that the total LDOS optimization is
worse compared to its bounds (≈ 3× polarized bound) reiterates the conclusion that it is probably
not generally possible to maximize the polarized LDOS for all three directions simultaneously.
One possible shape that will have same polarized LDOS in all directions is a sphere. As a

matter of fact, we found that at each wavelength . 600 nm, there exists a resonant sphere [35,46]
such that the LDOS at the center of the spheres comes within ≈ 20% of the corresponding-d
bound (see Appendix C). However, this resonant radius d is relatively large (λ/4<d<λ/2, in order
to create a resonance at λ) leading to small LDOS and bound (ρ/ρ0 ∼ 10–100), so saturating
such a large-d bound may have limited utility. Spheres at much smaller d do not exhibit these
“void resonances” and have much worse LDOS than the asymmetrical shapes in Fig. 2 for d = 50
nm.

4.2. Polarized LDOS

Since the spontaneous symmetry-breaking in the previous section suggests that optimization
favors maximizing LDOS in a single direction, we now consider optimizing the polarized LDOS.
That is, we maximize the power expended by a dipole current with a single orientation (similar to
previous work on cavity optimization in dielectric media [14,32,33]). As above, we performed
few-parameter optimization of ellipsoids, cylinders, and rectangular boxes. For many-parameter
optimization, we initially used spherical harmonics but observed that optimizing polarized LDOS
naturally leads to structures that are rotationally symmetric around the dipole axis. To exploit
this fact, we switched to simple polynomials in θ as described in Sec. 3. Specifically, we first
performed a rough scan of degree-2 polynomials to obtain a starting point, then we performed
a degree-5 optimization using the adjoint method (degree-10 gave similar results at greater
expense). (Gradually increasing the number of degrees of freedom is “successive refinement,” a
heuristic that has also been used in other work to avoid poor local minima [47,48].) The results
are shown in Fig. 3. We only plotted the cylinder results (orange dashed line), because the
ellipsoid and box results were worse.

Fig. 3. (a) Polarized LDOS optima (dashed lines) as a function of the wavelength λ at a
minimum separation d = 50 nm, along with the upper bound (black line) and the shape-
dependent bounds (black dots). Dashed lines are peak performance of separately optimized
structures for each λ, either cylinders (orange) or the optimized polynomials (blue) of Eq. (4).
Solid blue lines are spectra of the polarized LDOS for optimized polynomial designs at
selectedwavelengths λ = 400, 500, 600, 700, 800 nm, respectively. (b) Optimized polynomial
(top) and cylinder (bottom) structures at the wavelength λ = 400, 500, 600, 700 nm (to
scale; see supplementary Visualization 3, Visualization 4, Visualization 5, Visualization 6,
Visualization 7, Visualization 8, Visualization 9, and Visualization 10 for 3D views).

https://doi.org/10.6084/m9.figshare.12486344
https://doi.org/10.6084/m9.figshare.12486347
https://doi.org/10.6084/m9.figshare.12486353
https://doi.org/10.6084/m9.figshare.12486356
https://doi.org/10.6084/m9.figshare.12486359
https://doi.org/10.6084/m9.figshare.12486362
https://doi.org/10.6084/m9.figshare.12486368
https://doi.org/10.6084/m9.figshare.12486371
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We obtain an optimized LDOS within a factor of about 4 of the polarized-LDOS bound in the
short wavelength regions (λ<550 nm). At a wavelength of 400 nm, the optimized LDOS is only
2.5 times smaller than the bound, which greatly improves upon previous results that often came
only within 102–103 of the bound [1,13,34]. One interesting fact is that the optimized polarized
LDOS is actually only slightly smaller (≈ 10%) than the optimized total LDOS (blue dashed
line in Fig. 2(b)), which is consistent with the spontaneous symmetry breaking we commented
on above: optimizing total LDOS spontaneously chooses one or two directions to optimize at
the expense of all others, and hence is often equivalent to optimizing polarized LDOS. (If an
isotropic LDOS is required by an application, one approach is to maximize the minimum of three
polarized LDOSes [14].)
The upper bounds can help us to answer another important question: how much additional

improvement could be obtained by introducing additional void structures outside of our cavity?
(For example, by giving the cavity walls a finite thickness.) An upper bound to this improvement
is provided by computing a shape-dependent limit: we use the same bounding procedure, but
evaluate the limit assuming the material lies outside our optimized shape rather than outside of a
bounding sphere. This analysis, which is carried out in Appendix A, shows that our optimized
polarized LDOS is nearly reaching this shape-dependent limit as shown by the black dots in
Fig. 3(a). Therefore, little further improvement is possible using additional structures outside of
the cavity, which justifies optimizing over simple voids in order to probe the bounds.
We also explicitly studied the effect of a finite thickness for the metallic walls. To study the

cavity thickness effect, we implemented simulations of cylindrical shells using the optimized
cylinder at λ = 500 nm taken from Fig. 2(b). We found that the LDOS increases monotonically
with the shell thickness (Fig. 5 in Appendix D). A shell thickness about 100 nm yields a polarized
LDOS within 5% of the infinite-thickness result, which is not surprising considering that the
skin depth [37,49] of silver is <33 nm for λ>400 nm.

5. Concluding remarks

In this work, we obtain LDOS values within a factor of ≈ 10 of the total LDOS bound and
a factor of ≈ 4 of the polarized LDOS bound in a many-parameter metal-cavity optimization,
showing that these upper bounds are much more nearly attainable than was previously known [1].
Unlike previous work on scattering/absorption by small particles [45], our optimized cavities
do not appear to be in the quasi-static regime, since their largest axes are ∼ λ/2, even while
their smallest axes are deeply subwavelength and exhibit strong plasmonic effects. It is possible
that further improvements could be obtained by a more extensive search of local optima, or by
expanding the search to other classes of cavities beyond “star-shaped” structures that can be
described by a R(θ, φ) level set, e.g. via full 3D topology optimization. We would also like to
systematically explore the attainability of the finite-bandwidth bounds from Ref. [13], which are
useful for lossless dielectrics (where the single-frequency LDOS bound diverges). Conversely,
it is possible that incorporating additional constraints, such as considering a more complete
form of the optical theorem, may lower the LDOS bounds [20–23]. There has also been recent
interest in the magnetic LDOS, corresponding to magnetic-dipole radiation [50], and we expect
that qualitatively similar results (albeit with different optimal shapes) would be obtained for the
magnetic LDOS (or some combination of magnetic and electric, although trying to optimize
both simultaneously would likely encounter difficulties similar to those for optimizing multiple
polarizations). The magnetic LDOS would merely require one to replace our electric-dipole
source with a magnetic-dipole source, along with a similar switch of the Green’s function that
appears in the derivation of the bounds [1].
On a more practical level, a possible next step is to maximize LDOS (or similar figures of

merit) for 3D geometries more amenable to fabrication, whereas our goal in the present paper
was to probe the fundamental LDOS limits without concern for fabrication. Fortunately, our
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results show that relatively simple (constant cross-section) shapes such as cylinders can perform
nearly as well as the irregular shapes produced by many-parameter shape optimization, and
are relatively insensitive to small details (e.g. curved or flat walls). This is a hopeful sign for
adapting such cavities to nano-manufacturing by lithography or other techniques. And, although
infinite-thickness cavities completely absorb the emitted power, our computation of the radiated
power in finite-thickness shells (Appendix D) agrees with the theoretical bound’s prediction that
the optimal radiated power is ≈ 1/4 of the total [1].

Appendix A: LDOS limit in metallic cavity

In this appendix, we briefly review the evaluation of the LDOS upper bounds described in Ref.
[1]. In particular, the total (electric) LDOS limit can be evaluated as an integral over the entire
scattering volume V (the region containing the material χ):

ρ

ρ0
≤ 1 +

k3

4π
|χ(ω)|2

Im χ(ω)

∫
V

[
3
(kr)6

+
1
(kr)4

+
1
(kr)2

]
d3r , (5)

where ρ0 = ω2/2π2c3 is the free-space electric LDOS [7] and k = ω/c is the wavenumber.
Ostensibly, this limit is dependent on the exact scattering geometry V (leading to a shape-

dependent limit). However, Eq. (5) is also an upper bound on any scatterer contained within V
[1]. In this paper, we are interested in a minimal separation d as depicted in Fig. 1, so we take
V to be a spherical shell with inner radius d and shell thickness L, with L → ∞ for arbitrary
thickness. The integral of Eq. (5) can then be evaluated as

ρ

ρ0
≤ 1 +

|χ(ω)|2

Im χ(ω)

[
1
(kd)3

+
1
kd
+ O(kL)

]
, (6)

where O(kL) is a “Big-O” asymptotic bound [51]. As discussed in Ref. [1], the O(kL) divergence
as L → ∞, which arises from far-field scattering, is unphysical and overly optimistic. The
contribution of this term should be limited by the largest interaction distance over which
polarization currents contribute to the LDOS, thus is generally small compared to the first two
terms on the right-hand side of Eq. (6) and can be neglected at small separation distance d.
Therefore, the total LDOS limit for a metallic cavity with minimum separation distance d is

ρ

ρ0
≤ 1 +

|χ(ω)|2

Im χ(ω)

[
1
(kd)3

+
1
kd

]
. (7)

Note that this limit, where V is the exterior of a sphere, is about 8 times larger than the limit
discussed in Ref. [1] where V was a planar half-space. In practice, this factor-of-8 improvement
may be difficult to realize since optimized cavities will typically have only a small surface area at
the minimum separation d (except for the resonant spheres discussed in Appendix C below).
For the polarized LDOS limit, the integral in Eq. (5) (squared Frobenius norm of the

homogeneous Green’s function [1]) is replaced with the norm of the dipole polarization vector
multiplied by the Green’s function norm [12]:

ρp

ρ0
≤

1
3
+

k3

8π
|χ(ω)|2

Im χ(ω)

∫
V

[
a(r) + b(r)|p̂ · r̂|2

]
d3r , (8)

where p̂ is the unit vector in the polarization direction, and a(r) and b(r) are:

a(r) =
1
(kr)6

−
1
(kr)4

+
1
(kr)2

(9)

b(r) =
3
(kr)6

+
5
(kr)4

−
1
(kr)2

. (10)
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Similar to the total LDOS limit analysis, we can use a spherical bounding surface of radius d
to derive a general upper bound (also excluding the diverging O(kL) term):

ρp

ρ0
≤

1
3
+
|χ(ω)|2

3 Im χ(ω)

[
1
(kd)3

+
1
kd

]
, (11)

which is exactly 1/3 of the total LDOS limit. That is, the total LDOS bound is equivalent to
assuming that the polarized LDOS bound can be attained for all three polarizations simultaneously,
which our results show to be unlikely.

To compute the shape-dependent polarized-LDOS bound (for a given optimized shape) in
Sec. 4.2, we performed numerical integration of Eq. (8) over spherical angles (with the r integral
performed analytically), but excluding the 1/(kr)2 radiative term that yields the O(kL) divergence.

Appendix B: LDOS gradient from adjoint method

The gradient of the LDOS with respect to many shape parameters can be computed by solving
Maxwell’s equations a single additional time (for “adjoint” fields) via the adjoint method, a
key algorithm for large-scale photonics optimization [17,18]. The specific case of a boundary
perturbation is reviewed in Ref. [52], which shows that the variation of an objective function F
in response to small shape deformations δR (the surface displacement in the normal direction)
over the surface ∂Ω is

δF = 2Re
∬
∂Ω
δR(x′)

[
(1 − ε)E‖(x′) · EA

‖
(x′) +

(
1
ε
− 1

)
D⊥(x′) · DA

⊥(x′)
]

dS, (12)

where ε is the electric permittivity of the metal, E‖ is the surface-parallel electric field, D⊥ is the
surface-parallel displacement field, and the superscript “A” denotes the adjoint field excited by
an adjoint current source J = ∂F/∂E.

In the case of LDOS, a further simplification arises. The objective function F = ρ at position
x0 can be expressed as [2]

ρ = Im

ε0
πω

3∑
j=1

ŝj · Ej(x0)
 , (13)

where Ej denotes the field excited by a unit dipole source at x0 polarized in the ŝj direction, and
the sum over j accounts for all three possible dipole orientations. We can see from Eq. (13) that
the LDOS is proportional to the electric field, leading to an adjoint field that is also proportional
to the original problem for each orientation j,

EA
j (x) = Im

[ ε0
πω

Ej

]
. (14)

Inserting Eq. (14) into Eq. (12) gives us the LDOS gradient (first-order variation) with respect to
any shape deformation:

δρ =
ε0
πω

Im
∑
j

∬
∂Ω
δR(x′)

[
(1 − ε)Ej ‖(x′)2 +

(
1
ε
− 1

)
Dj⊥(x′)2

]
dS . (15)

Appendix C: Resonant sphere

For a void sphere cavity, the resonant electromagnetic surface modes can be analytically obtained
by solving the equation [35,46] (after correcting a typographical error in Ref. [35]):

εm(ω)H`(kma) [kdaJ`(kda)]′ = εdJ`(kda) [kmaH`(kma)]′ , (16)

where a corresponds to the void radius, ` is the (integer) index denoting the angular momentum,
km =

√
εmk and kd =

√
εdk are wave vectors in metal and air/vacuum respectively, J` and H` are
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spherical Bessel and Hankel functions of the first kind, and the prime denotes differentiation
with respect to kda or kma. Since the excitation source in our LDOS problem is a dipole at the
center of the sphere, only an ` = 1 mode can be excited. Therefore, for each wavelength 2π/k,
there is a minimal resonant sphere: a minimal radius d = ares satisfying Eq. (16) for ` = 1.

Using Eq. (16), we can directly compute this minimal resonance radius ares and then evaluate
the corresponding LDOS. Furthermore, since a semi-analytical solution for the resonant modes
is known for a void sphere [35], the LDOS can also be evaluated analytically via Eq. (1). We
find that our BEM results are within 2% of the analytical values using a surface mesh of ≈ 5000
triangles, validating our numerical solver. The resulting LDOS values are shown in Fig. 4, which
shows that the LDOS of the resonant sphere is very close to the theoretical limit (within ≈ 10%)
for the corresponding minimal separation d = ares. These strong results verify the limit at least at
the resonance combinations of d and λ.

Fig. 4. LDOS of a resonant air sphere in silver as a function of the wavelength λ (blue line),
where for each λ we choose the smallest radius ares for which we couple to a resonant mode
at λ. The black line is the corresponding upper bound from Eq. (7), setting the minimum
separation distance d = ares. The LDOS slightly exceeds the bound at small wavelengths
where the radius becomes so large that one would need to include the O(kL) term that we
dropped in Eq. (6).

Notice that the resonant-sphere LDOS seems to actually slightly exceed the theoretical limit
obtained with Eq. (7) in short wavelength range. There is no contradiction however: this is
simply the effect of the O(kL) we dropped in Eq. (6). In particular, the resonant radius here is
relatively large compared to the wavelength. For example, at λ = 700 nm we get ares = 273 nm,
for which kd = 2.45 and 1/(kd)3 + 1/(kd) = 0.47. As a matter of fact, 1/(kd)3 + 1/(kd)<1 for
all resonant spheres, thus the O(kL) term in Eq. (6) will have a non-negligible influence on the
bound, causing the actual bound to be slightly higher than Eq. (7).

Appendix D: Cavity thickness effect

Here, we study the effect of a finite thickness of the metallic walls, replacing the infinite metallic
regions of Fig. 1. To do this, we took the optimized cylinder at λ = 500 nm from Fig. 2(b)
and modified the silver walls to have finite thickness with the same inner surface. The LDOS
as a function of the shell thickness is shown in Fig. 5. We observe that the LDOS increases
monotonically with the shell thickness, and that a shell thickness of about 100 nm (about 3.7
times the skin depth) yields a polarized LDOS within 5% of the infinite-thickness result.
For a finite-thickness shell, some of the expended power (total LDOS) is absorbed and some

“leaks” through the finite thickness to radiate away, and it is interesting to consider the radiative
LDOS ρrad defined as the latter radiated power for the same dipole source (green line in Fig. 5).
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As a function of shell thickness, ρrad exhibits a peak: too thin and the resonance is too weak
to enhance LDOS, but too thick and no power escapes to radiate (all power is absorbed). The
theoretical limit for ρrad/ρ0 − 1 is 1/4 of the limit for the total (absorbed+radiated) LDOS [1].
Correspondingly, we plot 4ρrad/ρ0 in Fig. 5 (dashed green line) and see that, at the optimum ρrad,
the radiative LDOS is approximately 1/4 of the total (4ρrad ≈ ρ), agreeing with the prediction of
polarization-maximization in Ref. [1].

Fig. 5. LDOS of optimized cylindrical cavity a function of the wall thickness (blue line)
at a wavelength λ = 500 nm and a minimum separation d = 50 nm, compared to the
infinite-thickness LDOS (orange line). Also shown are the radiative LDOS ρrad/ρ0 (solid
green line: the radiated/non-absorbed power), as well as 4 × ρrad/ρ0 (dashed green line)
because the theoretical bounds predict that the maximum ρrad is 1/4 of the total LDOS [1].

Appendix E: Coupled-mode theory for radiative LDOS

Given a purely absorbing resonant cavity such as the ones optimized in this paper, the addition of
a radiation-loss channel (e.g. by coupling the cavity to a waveguide, permitting radiation through
a small hole in the cavity walls, or simply thinning a portion of the wall as in Appendix D) can
be analyzed quantitatively using the technique of temporal coupled-mode theory (TCMT) as
long as the lifetime of the cavity remains long enough to be treated as an isolated resonant mode
[24,53]. TCMT yields a result identical to that of Ref. [1]: the optimal radiated power is 1/4 of
the original absorbed power. We describe that straightforward analysis in this appendix, because
it helps to connect the results in this paper with applications to radiative cavities.
In particular, consider a purely absorptive cavity with a quality factor [24,53] Qa � 1, so

that the Purcell enhancement of the LDOS for a dipole source is proportional to Qa/V where
V is a corresponding modal volume [6,24]. Now, suppose that one perturbs the cavity to add
a radiative loss channel with a corresponding quality factor Qr. As long as the radiation loss
is low (Qr � 1, as is necessary to retain a well-defined resonance), it can be treated as a small
perturbation and the effect on Qa and V can be neglected as higher-order in 1/Qr [24]. With
the addition of this channel, the total cavity Q becomes Q = QaQr/(Qa + Qr), corresponding to
a total nondimensionalized loss rate of 1/Q = 1/Qa + 1/Qr [24], so the Purcell enhancement
factor is reduced to Q/V . However, only a fraction Q/Qr of the dipole power goes into radiation
(vs. absorption), so the resonant enhancement of the radiated power is proportional to

Q2

VQr
=

Q2
aQr

(Qa + Qr)2V
. (17)
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Eq. (17) is maximized when Qr = Qa, i.e. when the absorptive and radiative loss rates are
matched, similar to results obtained previously [25,26]. For Qr = Qa, Eq. (17) becomes Qa/4V ,
or exactly 1/4 of the Qa/V Purcell enhancement in the purely radiative case.

This result is consistent with the fact that our radiative-LDOS bound is 1/4 of the total LDOS
bound [1], but is more far-reaching. It prescribes how any high-Q absorbing cavity can be
converted to a radiating cavity with about 1/4 the radiated power, similar to the results we
obtained numerically in Appendix D.
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