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The concept of optimal communication channels shapes our understanding of wave-based com-
munication. Its analysis, however, always pertains to specific communication-domain geometries,
without a general theory of scaling laws or fundamental limits. In this article, we derive shape-
independent bounds on the coupling strengths and information capacities of optimal communication
channels for any two domains that can be separated by a spherical surface. Previous computational
experiments have always observed rapid, exponential decay of coupling strengths, but our bounds
predict a much slower, sub-exponential optimal decay, and specific source/receiver distributions
that can achieve such performance. Our bounds show that domain sizes and configurations, and
not domain shapes, are the keys to maximizing the number of non-trivial communication channels
and total information capacities. Applicable to general wireless and optical communication systems,
our bounds reveal fundamental limits to what is possible through engineering the communication
domains of electromagnetic waves.

I. INTRODUCTION

Optimal communication channels define the optimal
set of sources and measurements for communicating be-
tween two volumes [1–4]. The total number and relative
strengths of the communication channels depend sensi-
tively on the the size and shape of the volumes, which
has restricted most studies to specific and often highly
symmetric geometries [4–29], with only overall sum rules
known rigorously for arbitrary shapes [2, 4]. In this ar-
ticle, we propose a bound on the individual coupling
strengths between two domains of any shape, as long
as a spherical surface separates them. Our theory lever-
ages a monotonicity property of the singular values of the
Green’s-function operator to bound the strength of each
channel by its analytical counterpart from a concentric
bounding volume. A key hypothesis about communica-
tion channels has been a seemingly universal exponential
decay of the coupling strengths with the channel number,
supported in numerous computations [4–12, 30–33], and
which we rigorously prove in two dimensions. Surpris-
ingly, however, we find that such behavior is not generic:
in three dimensions our bounds decay sub-exponentially,
such that their logarithms decrease only with the square
root of the channel number and not linearly. The ori-
gin of this decay is the additional degeneracies that are
possible for concentric domain configurations in three-
dimensional space, which underscores the role of dimen-
sionality in channel counting. Our approach leads di-
rectly to shape-independent bounds on two fundamental
metrics in communication science: the maximal number
of non-trivial channels and their information capacities.
The bounds show that increasing domain size and opti-
mizing the global configuration, rather than altering the
local patterning of the domain shape, are the keys to
increasing the number of non-trivial channels and maxi-

mizing their information capacities.
Optimal communication channels represent a unifying

framework for optical physics [4, 34–37] with a wide range
of applications in communication sciences [38–50]. The
Green’s-function operator that connects a source volume
to a receiver volume, while accounting for all possible
background scattering, unambigously identifies the opti-
mal channel profiles and their coupling strengths through
its singular vectors and singular values, respectively [1–
4]. Yet identifying the singular-value decomposition is
generically an expensive and opaque computation, which
has often limited previous work to highly symmetric do-
mains, with little understanding of general properties or
scaling laws [4–18, 30–33] other than overall sum rules [1–
4].

A classical example that is analytically solvable is the
communication between two identical rectangular or cir-
cular apertures in the paraxial limit, where the optimal
communicating channels are prolate spheroidal waves,
exhibiting exponentially decaying coupling strengths [30–
33]. Similarly rapid decays of channel strengths are
observed across different systems, ranging from simple
geometries such as rectangular prisms [2, 3], strip ob-
jects [5, 13, 14], and concentric circumferences [6, 15, 16],
to complex geometries involving conformal conic arcs [7–
9, 17] and multiple rectilinear or spherical domains [10–
12, 18]. Many of these geometries are reexamined in a
recent review paper [4], where numerical observation of
apparent exponential decay of coupling strengths past
heuristic limits is hypothesized as being possibly univer-
sal.

In addition to the channel-strength decay rate, a re-
lated open question has been the maximum total number
of channels that can be supported between two regions.
Identifying bounds on the number of channels has been
of interest since the birth of the field [1–4], with partial
success: channel sum rules imply upper bounds on the
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number of “well-coupled” channels simply by assumption
of a minimum power-measurement threshold and equal
division of power among all channels. Yet, as illustrated
numerically, for example, in Ref. [4], once we move be-
yond some simple geometries, such as parallel plane sur-
faces in a paraxial limit, even well-coupled channels can
show substantially different power coupling strengths.

An inspiring precursor to our work is that of Ref. [19].
In Ref. [19], the authors examine the number of commu-
nication channels in two dimensions and derive a bound
on the number of communication channels between two
domains. There is a subtle mathematical issue regarding
domain monotonicity (or the lack thereof) of their sug-
gested channel normalization which means that their re-
sult is in fact not a fundamental limit (discussed more in
the SM), but their result can be understood as a heuris-
tic that identifies the correct scaling laws for circular do-
mains in 2D, and roughly maps to the ultimate funda-
mental limits. The key insight of Ref. [19]—Green’s-
function singular values have monotonicity properties
that imply fundamental limits—forms the foundation of
our approach, and enables both the fundamental limits
and asymptotic analysis that we identify in two and three
dimensions.

The information capacities of optimal communication
channels have been investigated for domains of vari-
ous shapes including spherical [15], cubic [51, 52], and
non-symmetrical geometries [7, 40]. There are shape-
dependent bounds to the information capacities for line-
of-sight communications [20–24] and spherical communi-
cation domains [25, 26]. A more general computational
framework is proposed in Refs. [27–29] which bounds the
total information capacity of a communicating domain by
optimizing over freely varying currents in a larger bound-
ing domain. This approach, however, forcefully restricts
the optimization space of the free-varying currents to
bound the information capacity of a MIMO system that
only has access to N number of communication chan-
nels [29]. Such restrictions yield an optimization space,
represented by the span of the first N optimal commu-
nication channels of the bounding domain, that does not
encompass all possible current distributions of any N -
channel MIMO system.

Thus the questions remain: how rapidly must optimal-
communication-channel strengths decay, what is the
maximum number of usable communication channels,
and does this imply bounds on maximum information
capacities? We answer each of these questions below.

II. OPTIMAL COMMUNICATION CHANNELS

Our shape-independent bounds stem from combining
two known theorems: (1) the coupling strengths of the
optimal communication channels between two domains
are the singular values of the corresponding Green’s-
function operator [1–4] and (2) those singular values
increase monotonically with the size of the two do-

mains [53]. The singular value decomposition of the
dyadic Green’s-function operator G(r, r′) from a source
region Vs to a receiver region Vr is

G(r, r′) =

∞∑

q=1

squq(r)v∗q(r
′), (1)

where {vq(r)}∞q=1 is a set of orthonormal vector-valued
basis functions in the source region, {uq(r)}∞q=1 is a set of
orthonormal vector-valued basis functions in the receiver
region, and {sq}∞q=1 is the set of (non-negative) singular
values. The tuples {(vq,uq, sq)}∞q=1 represent the op-
timal communication channels, with the fields radiated
from sources vq(r) mapping uniquely to fields uq(r) in
the receiver region with amplitudes sq. The absolute
square of the amplitude |sq|2 is referred to as the cou-
pling strength or channel strength of channel q.

The key theorem that enables our shape-independent
bounds, and is perhaps less well-known, is that all singu-
lar values of a Green’s-function operator, as in Eq. (1),
may not decrease as the source and receiver domains are
enlarged [53]. More precisely: if one domain encloses an-
other, each singular value of the former cannot be smaller
than the corresponding singular value of the latter. We
refer to this property of coupling strengths as “domain
monotonicity.” It can be proven through a recursive ar-
gument. To simplify the notation and intuition, we en-
code the spatial variations of the source amplitude and
polarization in a finite-dimensional vector p, define the
Green’s-function operator as a finite-dimensional matrix
G, and use † to denote Hermitian conjugation. The op-
erators G†G and GG† are necessarily Hermitian oper-
ators, which means their eigenvalues are real, and their
eigenvalue/eigenfunction pairs can be found variationally
via maximization and orthogonalization. (Another im-
portant characteristic of these operators is that they are
positive semidefinite which implies their eigenvalues are
non-negative, though this positive-semidefinite property
is not a necessary condition for the variational procedure
we discuss below.) The square of the first singular value
is obtained by maximizing the Rayleigh quotient of G†G:

|s1|2 = max p†G†Gp
p†p . Clearly this may not decrease

as the source domain enlarges, as maximization over a
larger space of vectors cannot lead to a smaller optimal
value. The second singular value similarly maximizes the
Rayleigh quotient, now subject to orthogonality to the
first singular vector. Because the first singular vector has
changed with the domain, there is not a straightforward
comparison to the optimization problem defining the sec-
ond singular vector of the original domain. Yet the extra
freedom given to the first singular vector ultimately only
reduces the effect of the orthogonality constraint, such
that the second singular value must also increase due to
the domain enlargement. (A more precise version of this
argument is given in Ref. [54].) The same argument re-
cursively applies to the rest of the singular values, and
also for an enlarged receiver domain. Hence we have
the key theoretical ingredients: optimal communication
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Figure 1. The coupling strengths of the communication chan-
nels between a source volume Vs and a receiver volume Vr

are upper bounded by their counterparts from the core–shell
bounding volume (shaded in grey). We can also interchange
the roles of the source and receiver volumes, and we obtain
tighter bounds by using whichever is smaller as the “inner”
volume in this figure.

channels are defined by the singular-value decomposition
of the Green’s-function operator between source and re-
ceiver domains, and the singular values satisfy domain
monotonicity on both domains.

III. CHANNEL-STRENGTH BOUNDS

In this section, we derive shape-independent bounds
on total channel strengths, relative channel strengths
normalized against a sum rule, and their collective
asymptotic decay rates in the many-channel limit. The
domain-monotonicity principle discussed above imme-
diately leads to bounds: the coupling strengths |sq|2
for arbitrary source and receiver domains are individu-
ally bounded above by the respective coupling strengths
of any enclosing domains. We select an analytically
tractable core–shell set of enclosing domains, depicted as
the grey shaded region in Fig. 1, which yield the bounds:

|sq|2 ≤ |s(core–shell)q |2, for q = 1, 2, ... (2)

In such core–shell configurations we can choose either the
source or the receiver to be enclosed in the core; to find
the tightest upper bounds, we take the minimum of both
possible configurations. The core is a cylinder for 2D and
a sphere for 3D. In the following sub-sections, we derive
analytical expressions for the bounds in both dimensions.

A. Channel-strength bounds in 2D

Consider communication in two dimensions between a
source domain Vs and a receiver domain Vr as in Fig. 1.
The sources are bounded within a cylindrical core of
radius Rs and the receivers sit a minimum distance d
and maximum distance dmax = d + 2Rr + 2Rr from
the sources. The bounding volumes, comprising an in-
ner cylinder and an outer shell, are shaded in grey in
Fig. 1. The singular values of the Green’s function oper-
ator between the concentric cylinder–shell bounding vol-
ume can be identified by first performing a separation of
variables for the two-dimensional scalar Green’s function
G(r, r′) = ik2

4 H
(1)
0 (k|r− r′|) in polar coordinates [55]:

G(r, r′) =
ik2

4

∞∑

q=−∞
H(1)
q (kρ)e−iqφJq(kρ

′)eiqφ
′
, (3)

where the functions H
(1)
q (kρ)e−iqφ and Jq(kρ)e−iqφ are

the outgoing and regular cylindrical waves, with H
(1)
q (x)

and Jq(x) being the Hankel function of the first kind
and the Bessel function, respectively. Their polar coor-
dinates (ρ, φ) and (ρ′, φ′) are defined on the bounding
shell and bounding cylinder, respectively, relative to the
center of the cylinder-shell bounding volume. The cylin-

drical waves H
(1)
q (kρ)e−iqφ and Jq(kρ)e−iqφ are the (un-

normalized) left and right singular vectors of the Green’s
function operator in the cylinder-shell bounding volume.
(The cylindrical symmetry of the bounding volume en-
sures orthogonality.) There are two possible cylinder–
shell bounding volumes: one centers around the source
domain and one centers around the receiver domain. To
tighten the upper bound, we choose the smaller of the
two domains as the ”inner” volume in Fig. 1 because

it leads to a smaller coupling strength |s(cylinder–shell)q |2
which is the product of the norms of the unnormalized

singular vectors, H
(1)
q (kρ)e−iqφ and Jq(kρ)e−iqφ, in their

respective bounding volumes:

|s(cylinder–shell)q |2 = π2k2
∫ Rmin

0

|Jq(kρ)|2ρdρ
∫ Router

Rinner

|H(1)
q (kρ)|2ρdρ.
(4)

As the inner bounding cylinder is chosen to encompass
the smaller domain, its radius is the smaller of the two
radii, i.e., Rmin = min{Rs, Rr}. Similarly, one can show
that the inner and outer radii of the outer bounding shell
are Rinner = d + Rmin and Router = d + 2Rs + 2Rr −
Rmin, respectively. The singular values in Eq. (4) are
dimensionless quantities because our Green’s function,
of Eq. (3), differs from the conventional definition [4, 56]
by a factor of k2 to be inversely proportional to volume.

The number of non-trivial communication channels
is determined by the number of channels whose rela-
tive channel strengths are above a certain measurement
threshold. The relative channel strengths can be normal-
ized either by a total sum rule S =

∑∞
q=−∞ |sq|2 or by

the largest channel strength [4]. Lower bounds on the
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Figure 2. Shape-independent upper bounds on the relative coupling strengths |sq|2 normalized against the total sum rule
S in two- and three-dimensional spaces. (a) A grey-shaded concentric core–shell bounding volume enclosing a square–square
configuration of sources and receivers in the blue shaded region, as well as a shell–shell configuration in the red shaded region. (b)
In two-dimensional (2D) space, the upper bound, calculated for the grey-shaded bounding volume in (a), decays exponentially
as in the dashed black line. (c) In three-dimensional (3D) space, the additional azimuthal degeneracy leads to an optimal sub-
exponential decay that is achieved by the shell–shell configuration. The sub-exponential decay rate (dashed black line) suggests
many more communication channels at the large-channel limit than previously hypothesized exponential decays (dotted lines).

sum rule can be analytically derived based on the mono-
tonic decay of wave energy in free space, thus leading to
bounds on the total number of channels above a certain
sum-rule energy fraction. The sum rule S is a double
integral of the absolute square of the two-dimensional
Green’s function over both the source and receiver do-
mains [2, 4]

S =

∫

Ss

∫

Sr

|G(r, r′)|2drdr′ ≥ k4SsSr|H(1)
0 (kdmax)|2/16,

(5)
where we further lower bound S by the fact that the
magnitude of the Green’s function takes its minimal value
at the most separated points between the two domains,
which is at a distance dmax = d + 2Rr + 2Rs for the
cylinder–shell bounding volume illustrated in Fig. 1. The
variables Ss and Sr in Eq. (5) denote the total area of
the source and receiver domains. Combining Eq. (4) and
Eq. (5), we derive

|sq|2
S
≤ 16|s(cylinder–shell)q |2

k4SsSr|H(1)
0 (kdmax)|2

, (6)

which is a shape-independent bound on the relative chan-
nel strength between domains in two-dimensional space.
In the many-channel limit, the bound in Eq. (6) simpli-
fies:

|sq|2
S
≤ R4

min

q4SsSr|H(1)
0 (kdmax)|2(1 + d/Rmin)2(q−1)

, as q →∞.

(7)
The presence of the exponential factor of 2(q − 1) in-
dicates that channel strengths in two dimensions must
decay at least exponentially fast with channel number,
in agreement with the previously hypothesized exponen-
tial decay of channel strengths. The exponential decay

rate depends only on the separation distance d relative to
the smaller radius Rmin between the two communication
domains.

The upper bound in Eq. (5) and its optimal exponen-
tial decay in Eq. (7) applies to any two domains that
can be separated by a cylindrical surface. The bound
is achieved by concentric communicating domains that
fill the bounding volume, while the optimal decay rate
can also be achieved with concentric sub-domains. To
illustrate the latter point, in Fig. 2(a), we arrange a
fixed number of sources and receivers in two different
configurations inside a bounding volume. The first con-
figuration (blue shaded region) consists of two squares of

sources and receivers with the side lengths of λ/
√

2. The
second configuration (red shaded region) consists of con-
centric shell-like communicating domains with the same
source and receiver areas. Both configurations are en-
closed in a concentric cylinder–shell bounding volume of
2Rs = 2Rr = d = λ. Inside this bounding volume, the
maximal relative coupling strength is given by the solid
black line in Fig. 2(b), calculated using Eq. (6). We ob-
serve that, while the square–square configuration (solid
blue line) falls far short of the bound, arranging the same
number of sources and receivers to cover a wider solid
angle in a shell–shell configuration (solid red line) en-
ables close approach to the upper bound. (The black-
line upper bound is clamped to 1; no channel can have
strength larger than 1. The looseness of Eq. (7) arises
from the dramatic mismatch of the source–receiver vol-
umes to the bounding volumes.) Moreover, the shell–
shell configuration achieves the optimal exponential de-
cay predicted in Eq. (7). This result corroborates previ-
ous works [4–12, 30–33] that predicted exponential decay
in wide-ranging scenarios, and hypothesized that expo-
nential decay may be a universal rule. As we show below,
however, the three-dimensional behavior is quite differ-
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ent.

B. Channel-strength bounds in 3D

The derivation of shape-independent bounds on chan-
nel strengths in three dimensions is similar to the deriva-
tion in two dimensions, with the cylinders replaced by
spheres. For this 3D case, we now use a full vector for-
mulation of the problem, as appropriate for a full elec-
tromagnetic solution. So, we move to dyadic Green’s
functions, and we start by expanding the dyadic Green’s
function as a summation of outer products, now of spher-
ical vector waves:

G(r, r′) = ik3
∞∑

n=0

n∑

m=−n

∑

j=1,2

vout,nmj(r)v∗reg,nmj(r
′),

(8)
where vout,nmj and vreg,nmj(r

′) are the outgoing and reg-
ular spherical vector waves [57] defined on the bounding
shell and bounding sphere, respectively. The vectors r
and r′ are spherical coordinates defined with respect to
the center of the concentric bounding volume. The regu-
lar (outgoing) spherical vector waves are formed by com-
bining the angular dependency of vector spherical har-
monics with the radial dependency of spherical Bessel
(Hankel) functions [57]. Explicit expressions of the vec-
tor spherical waves, vout,nmj and vreg,nmj(r), and the
wave equation we use to define the Green’s function are
given in the SM. The indices n and m index the un-
derlying spherical harmonics, and j = 1, 2 denotes the
two possible polarizations of a transverse vector field.
The orthogonality of the spherical waves in a spheri-
cally symmetric domain allows us to identify vout,nmj

and vreg,nmj(r) as the (unnormalized) left and right sin-
gular vectors of the Green’s function operator defined
on the three-dimensional sphere-shell bounding volumes.
The corresponding singular values are the products be-
tween the norms of functions vout,nmj and vreg,nmj(r) in
their respective volumes:

|s(sphere–shell)nmj |2 = k6
∫

Vshell

|vout,nmj(r)|2 dr

·
∫

Vsphere

|vreg,nmj(r)|2 dr, (9)

where Vshell and Vsphere represent the volumes of the
bounding shell and bounding sphere. Explicit expres-

sions of the singular values |s(sphere–shell)nmj |2 can be found
in the SM. According to the domain-monotonicity prop-
erty in Eq. (2), the q-th largest number from the set of

all possible |s(sphere–shell)nmj |2 upper-bounds the q-th largest
channel strength of any configuration of sources and re-
ceivers in the sphere–shell bounding volume.

Again, the number of non-trivial communication chan-
nels is determined by normalizing the channel strengths
to the total sum rule. The sum rule is now lower bounded

by (cf. SM):

S =

∫

Vs

∫

Vr

||G(r, r′)||2F drdr′ ≥
k4VsVr

8π2d2max

+O
(

(kdmax)
−4
)
.

(10)

For conciseness, we assume the furthest separated points
are in the far field, i.e. kdmax � 1, so that only the lead-
ing term in Eq. (10) remains. This can be easily general-
ized by explicitly including two other higher-order terms,
leading to a somewhat more complicated expression but
the same asymptotic properties.

By combining the upper bound of channel strengths in
Eq. (2) and the lower bound of the sum rule in Eq. (10),
we derive a key result for 3D communication domains, a
shape-independent upper bound on their relative channel
strengths normalized against the total sum rule:

|snmj |2
S

≤ 8π2d2max

k4VsVr
|s(sphere–shell)nmj |2, (11)

where the singular value of the sphere–shell bounding vol-

ume, |s(sphere–shell)nmj |2, is identified in Eq. (9), and whose
explicit expression can be found in the SM. One immedi-
ate prediction of the upper bound in Eq. (11) is an opti-
mal sub-exponential decay rate of the channel strengths
between two 3D domains, which we now derive. The to-
tal number of channels that has n-index less or equal to
n is q = 2(n+ 1)2. We use this total channel index q as
our new index for channel strengths to meaningfully de-
scribe their decay rate. When the total number q →∞,
Eq. (11) can be simplified to (cf. SM):

|sq|2
S
≤ 2π2d2max

k4VsVr(1 + d/Rmin)
√
2q+1

, as q →∞, (12)

where the parameter Rmin = min{Rs, Rr} denotes the
radius of the smaller domain. Equation (12) shows that,
regardless of the domain shape, channel strengths |sq|2
in three-dimensional space have to decay at least as fast
as a−

√
q, where a is a bounding-domain-dependent nu-

merical constant (a = (1 + d/Rmin)
√
2), and the key new

feature is the square root dependence on q in the expo-
nent. Such a decay is sub-exponential, as its logarithm
decays only with the square root of the channel number
rather than the (much faster) linear reductions charac-
teristic of exponential decay.

Figure 2(c) compares the coupling-strengths bound in
3D, with a clearly sub-exponential decay rate, to the
coupling strengths of two configurations of sources and
receivers (shell–shell and cube–cube) in a sphere–shell
bounding volume. Both configurations possess a volume
λ3/(3

√
3) of sources and receivers and follow the same

layout as in Fig. 2(a). Similar to the 2D case, we ob-
serve that the shell–shell configuration closely follows the
bound while the cube–cube configuration falls short. In-
terestingly, both the cube-cube and shell-shell configu-
rations and the upper bound first enter a phase of ap-
proximately exponential decay (dotted lines in Fig. 2(b),
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modelled by a spherical heuristic number, NSH = 2k2R2.

a phenomenon also observed in Ref. [4]) before they ex-
hibit different sub-exponential decays on a larger scale.
By “sub-exponential”, we mean that the fall off in the
channel strengths is not as fast as exponential; high-index
channels have somewhat stronger coupling strength than
an exponential fall-off would predict, and, in the many-
channel limit, the asymptotic sub-exponential decay pre-
dicted in Eq. (12) bounds all geometries and also puts
forth the concentric shell-shell configurations as the opti-
mal candidate for achieving the slowest sub-exponential
decay.

The sub-exponential decay of the channel-strength
bound in 3D is in stark contrast with its exponentially
decaying counterpart in 2D. This point is accentuated by
contrasting Fig. 2(c) with Fig. 2(b), where their asymp-
totic decay rates, shown as the black dashed lines, are
fundamentally different. This difference originates from
the additional azimuthal degeneracy of communication
channels in 3D. Such degeneracy manifests through the
staircase behavior of the upper bound in Fig. 2(c). It
allows one to potentially establish many more useful or-
thogonal channels in 3D: the bound suggests approxi-
mately 145 channels for 3D domains above a threshold
of 10−4 in Fig. 2(c), as compared to only 8 channels in the
2D case above the same threshold. The difference in the
decay rate of upper bounds in two- and three-dimensional
spaces underscores the role of dimensionality in channel
counting.

C. Bounds on the number of non-trivial channels

The number of non-trivial communication channels
is often regarded as the number of “spatial degrees of
freedom” for communicating between two regions, an
idea that generalizes the concept of diffraction limits [4]
and dictates fundamental response in many wave sys-
tems [35, 58, 59]. A communication channel is considered
non-trivial if its coupling strength is above a certain per-
centage in the total sum rule [4]; the bounds of Eqs. (6)
and (11) on relative coupling strengths therefore directly
lead to bounds on the number of communication chan-
nels.

Figure 3 shows the maximal number of channels avail-
able for any source domain within a three-dimensional
sphere of radius R, computed from Eq. (11). The receiver
domain is a shell ten wavelengths away, with a thickness
of one wavelength, as shown in the inset of Fig. 3. (The
source and receiver domains can be transposed.) We also
assume both domains occupy at least half of their re-
spective bounding volumes. The bounds are plotted as a
function of the maximal domain radius R for a number
of measurement thresholds. The bounds are not overly
sensitive to the measurement threshold: a hundredfold
increase in the sensitivity, as occurs going from the blue
line to the yellow line, does not even double the number
of available channels. On the other hand, the bounds
increase approximately quadratically with the maximal
domain radius R, suggesting enlarging domain size is the
key to gaining more useful channels.

The quadratic increase of the bound with respect to the
domain radius R can be understood as arising from the
increasing surface area of two sufficiently separated com-
munication domains. At first, one might expect the mode
number to increase with the volume of the domains, but
the waves in the volumes are determined by the waves at
the surfaces (by the surface equivalence principle [60]),
and restrictions on the number of unique wave patterns
at the surface will naturally constrain the number of in-
dependent volume functions as well. As the domain size
increases, we can use the notion of a “spherical heuris-
tic number,” denoted NSH, to estimate the number of
communication channels:

NSH = 2k2R2. (13)

Spherical heuristic numbers were proposed in Ref. [4],
where the expression 16πR2/λ2 was suggested. Here we
modify the expression, instead assuming one unique spa-
tial mode per λ2/π area on the surface of the spheri-
cal bounding domain (instead of λ2/4 as previously sug-
gested [4]), multiplied by two polarizations, resulting in
the expression of Eq. (13). The λ2/π area expression
comes from treating each surface patch on the source
and receiver domains as interacting in the paraxial limit–
certainly not exactly true, but sufficient to gain intuition.
Fig. 3 shows quantitative agreement between the spheri-
cal heuristic number and the rigorously calculated bound
under a 0.1% threshold on the sum rule, explaining the
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approximately quadratic increase of the number of chan-
nels as a function of domain radius.

The bounds in Fig. 3 weakly depend on the sum-rule
percentage threshold because of the rapid decay of chan-
nel strength at large-order channels. Though not shown
in this graph, the bound barely depends on the depth of
the receivers and their distance from the source (unless
in the extreme near-field limit when the separation dis-
tance is much less than a wavelength). All these imply
that the group of bounds shown in Fig. 3 represent the
intrinsic number of channels one can couple out of any
source domain of a given size to the far field.

IV. BOUNDS ON THE INFORMATION
CAPACITIES OF COMMUNICATION

CHANNELS

Information capacity, defined as the maximal rate at
which the information can be reliably transmitted be-
tween two communicating domains, is a notion that has
been central to the development of modern communica-
tion systems [40, 61]. In this section, we show how our
coupling-strengths bounds can help one determine the
maximal information capacity of communication chan-
nels in three-dimensional space. A key feature of our
approach is that it tightly bounds the total information
capacity of any given number of channels, which is highly
relevant to modern MIMO systems that usually have ac-
cess to a finite number of antennas.

The information capacity C of N optimal communi-
cation channels (per unit time and unit bandwidth) is
the sum of the capacity of each channel, each of which
logarithmically depends on its input power Pq, coupling
strength |sq|2, and noise power Pnoise [40]:

C =

N∑

i=q

log2

(
1 +

Pq|sq|2
Pnoise

)
bits/s/Hz, (14)

where we assume an additive white Gaussian noise back-
ground with the same noise power Pnoise for each channel.

A larger domain size is always favorable to increase
the information capacity of the first n optimal commu-
nication channels. This is because the capacity C in
Eq. (14) increases monotonically with coupling strength
|sq|2, which in turn increases monotonically with the do-
main size. Therefore, the capacity of the sphere–shell
bounding volume serves as an upper bound for the ca-
pacity of all possible sub-domains within:

C ≤
N∑

q=1

log2

(
1 +

Pq|s(sphere–shell)q |2
Pnoise

)
bits/s/Hz, (15)

where the coupling strength |s(sphere–shell)q |2 of the
sphere–shell bounding volume is given in Eq. (9). One
can solve for the optimal allocation of powers Pq for a

fixed total power input
∑N
q=1 Pq = P , by the “water-

filling” algorithm [40], with the semi-analytical form
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Figure 4. Maximal information capacity C between any two
domains that fit within the radius-R sphere and wavelength-
thickness bounding shell of Fig. 3. In the high SNR limit,
the bound increases quadratically with domain size R (solid
black), whereas in the low SNR limit, the bound increases
only linearly (dashed black). When the number of available
channels is restricted by the number of antennas, Nantenna,
the channel-capacity bounds tail off and increase only loga-
rithmically with domain size (blue, orange, yellow).

Pq = max{0, µ − Pnoise/|s(sphere–shell)q |2}, where µ is the

numerical constant for which
∑N
q=1 Pq = P . The signal-

to-noise ratio (SNR), defined as the ratio between the
total power and noise power, i.e. SNR = P/Pnoise, is the
key external parameter that affects the optimal strategy
of the power allocation.

Figure 4 shows the capacity bound for communication
between arbitrary domains contained in the sphere–shell
bounding volumes in two limits: high SNR (solid black),
and low SNR (dashed black). The size dependencies of
the capacity bounds are quite different in the two limits.
When SNR is very small, the logarithms approximately
become linear functions of the power, in which case the
optimal allocation puts all of the power in the single chan-
nel with the highest coupling strength [40]. The maxi-
mum coupling strength scales linearly with the radius

R: max
{
|s(sphere–shell)q |2

}
= k2RrR, provided that the

radius R of the bounding sphere is much larger than a
wavelength and the bounding shell is in the far field of
the bounding sphere (cf. SM). Then we have

C ≤ SNR · log2(e)k2RrR, for SNR→ 0. (16)

By contrast, in the high-SNR limit, the optimal alloca-
tion of power equally divides amongst all channels with
nonzero channel strengths [40]. The information capac-
ity in this case scales with the number of such channels,
which, as we established in the Sec. IV, depends quadrati-
cally with the domain radius R (modeled by the spherical
heuristic number NSH = 2k2R2). Hence, the capacity
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bound increases quadratically with R in the high-SNR
limit:

C ≤ 2 log2(SNR)k2R2, for SNR� 0. (17)

In many scenarios, the number of communication chan-
nels may be restricted well below our electromagnetic
limit; one common example may be a MIMO system
with antennas spaced more than half a wavelength apart.
When the number of communication channels is re-
stricted by the number of antennas, Nantenna, the growth
in the large-domain limit cannot remain quadratic or
even linear; instead, the capacity bound will grow loga-
rithmically at best. This is because for a fixed number of
channels, the capacity of each channel increases logarith-
mically with channel strength, which in turn increases at
most linearly with R:

C ≤ Nantenna log2

(
SNR · k

2RrR

Nantenna

)
, for SNR� 0.

(18)
The logarithmic dependence is confirmed by the compu-
tations of the blue, orange, and yellow lines in Fig. 4,
with each having the same SNR as the solid black line,
but decreasing Nantenna. The quadratic increase at the
outset of each curve saturates almost exactly at the do-
main size where the number of electromagnetic chan-
nels (NSH = 2k2R2) equals Nantenna. Thus, despite the
abundant number of electromagnetic channels in a large
domain, antenna restrictions can impose significant con-
straints on the total information capacity.

V. EXTENSIONS

The key finding in this paper is a shape-independent
bound on coupling strengths that we derive based on the
domain-monotonicity property of the Green’s function
operator. This upper bound leads to two important dis-
coveries. First, the sub-exponential decay in Eq. (12)
identifies the slowest possible decay rate between any two
domains in free space, and implies that three-dimensional
domains have dramatically more channels available than
their two-dimensional counterparts. Second, the ensu-
ing bounds and scaling laws on the maximal number of
usable communication channels and their maximal N -
channel information capacity represent the ultimate limit
that no domains can surpass. In this section, we briefly
touch on other possible extensions of these results.

The bounding volume for the source and receiver do-
mains can be any shape and size. We choose the concen-
tric bounding volume in this article because of its analyt-
icity and generality: its singular values are analytically
tractable and the resulting bound is general enough to
apply to any two domains that can be separated by a
spherical surface. In practice, if the sources and receivers
are constricted to a domain smaller than the concentric
bounding volume, one can sacrifice the analyticity by nu-
merically computing the singular values of the largest

possible domain for a tighter bound. Another analyti-
cal though less general bounding volume arises when the
sources and receivers are known to be in the paraxial
limit. Then, one can form the bounding volume as two
rectangular cuboids whose singular values are known an-
alytically in the paraxial limit [2]. While we mainly focus
on the concentric sphere–shell bounding volume in this
work, future studies of alternative bounding volumes may
reveal the dependence of the bound on the solid angles
between the sources and receivers that otherwise cannot
be captured by a concentric bounding volume.

Near-field information and power transfer have shown
great promise in both wireless communication and fun-
damental science because of the abundant well-coupled
channels in the form of electromagnetic evanescent
waves [62–65]. This abundance emerges in our shape-
independent bound in Eq. (12) where the optimal sub-

exponential decay (1 + d/Rmin)
−√2q

tends to unity when
the separation distance d goes to zero. Meanwhile, the
maximal number of non-trivial communication channels
diverges. While this article mainly focuses on the appli-
cation of our shape-independent bounds in the far field, it
is also interesting to see how this formalism can regulate
the maximal information and power transfer for different
geometries in the near field.

The n-channel capacity bound proposed in this article
may have ramifications on the optimal performance of an-
tenna selections in massive multiple-input and multiple-
output (MIMO) systems [66–69]. The technique of an-
tenna selections mitigates the cost and complexity of
MIMO systems by judiciously selecting only a fixed-size
subset of antennas while maintaining a large total infor-
mation capacity. How large the total information capac-
ity can be among all the possible subsets is a question
that falls under the umbrella of our N -channel capacity
bound, which suggests the possibility to bound the ca-
pacity of any N -antenna subset by the capacity of the
first N optimal channels of the total antenna arrays.

The presence of external scatterers can strongly affect
the scattering amplitude of electromagnetic fields and the
information content it carries. There are many shape-
independent bounds proposed in this regard to bound
the maximal power response of such external scatter-
ers [58, 59, 70–84], though there is still a need to un-
derstand their maximal information throughput. For ex-
ample, to what degree could an external scatterer alter
the sub-exponential decay rate predicted in this paper?
What is the maximal number of non-trivial channels an
external scatterer can help to establish and what are
the maximal information capacities of those channels?
Though a few bounds have been identified in certain
physical scenarios [35, 36, 85, 86], those are still open
questions that await for general answers. Among various
design techniques in search of better scatterer structures
or antenna arrays, shape-independent bounds continue
to offer a new lens to analyze the fundamental limits
of information and power transfer in both fundamental
physics and communication science.
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I. SINGULAR VALUES OF THE GREEN’S FUNCTION OPERATOR IN THE SPHERE–SHELL
BOUNDING VOLUME

In this section, starting from the full-electromagnetic wave equation, we define the dyadic Green’s function and
expand it with spherical vector waves. The spherical vector waves are the singular vectors of the dyadic Green’s
function operator in the sphere–shell bounding volume. We present explicit expressions for these singular vectors and
derive their corresponding singular values. Results in this section supplement the arguments presented in Section 3A
in the paper.

A. Dyadic Green’s function in spherical vector waves representation

The dyadic Green’s function G(r, r′) in our paper is defined as the solution of the following wave equation under a
point source excitation:

1

k2
∇×∇×G(r, r′)−G(r, r′) = Iδ(r− r′), (1)

where I is the unit dyad and k is the magnitude of the free-space wavevector. Slightly different from the conventional
definition by a factor of k2, the wave equation in Eq. (1) has the advantage of giving dimensionless singular values
of the Green’s function operator since G(r, r′) now has dimensions of reciprocal volume. The solution of Eq. (1) is
commonly written as [1]

G(r, r′) = (k2I +∇∇)
eik|r−r

′|

4π|r− r′| . (2)

Considering the spherical symmetry of the sphere–shell bounding volume, we express the dyadic Green’s function in
Eq. (2) in its spherical vector waves representation [1]:

G(r, r′) = ik3
∞∑

n=0

n∑

m=−n

∑

j=1,2

vout,nmj(r)v∗reg,nmj(r
′), (3)
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where vout,nmj(r) and vreg,nmj(r
′) are the outgoing and regular spherical vector waves. Their explicit expressions are

discussed in the following subsection. The index n and m are the two indices of the underlying spherical harmonics,
and j = 1, 2 denotes the two possible polarizations of the transverse vector field.

B. Spherical vector waves as the singular vectors of the Green’s function operator

In this section, we give explicit expressions for the spherical vector waves, vout,nmj(r) and vreg,nmj(r
′). We also

present a crucial orthogonal relationship for these spherical vector waves, which allows us to identify them as the
singular vectors of the Green’s function operator in the sphere–shell bounding volume. The center of our sphere–
shell bounding volume is chosen as the origin for the coordinates r and r′. In spherical coordinates (r, θ, φ), the
spherical vector waves can be separated into a radial dependency of a spherical Hankel/Bessel function and an angular
dependency of vector spherical harmonics. Their spatial distributions depend the polarization state j = {1, 2}, which
we spell out separately:

vout,nm1(r) = γnh
(1)
n (kr)V(3)

nm(θ, φ) (4)

vout,nm2(r) = γn




n(n+ 1)

h
(1)
n (kr)

kr
V(1)
nm(θ, φ) +

[
krh

(1)
n (kr)

]′

kr
V(2)
nm(θ, φ)





(5)

vreg,nm1(r) = γnjn(kr)V(3)
nm(θ, φ) (6)

vreg,nm2(r) = γn

{
n(n+ 1)

jn(kr)

kr
V(1)
nm(θ, φ) +

[krjn(kr)]
′

kr
V(2)
nm(θ, φ)

}
, (7)

where the prefactor γn = 1/
√
n(n+ 1). The three vector spherical harmonics are an extension of the scalar spherical

harmonics: V(1)(θ, φ) = r̂Y mn (θ, φ), V(2)(θ, φ) = r∇ [Y mn (θ, φ)], and V(3)(θ, φ) = ∇× [r̂Y mn (θ, φ)], where Y mn (θ, φ) =√
(2n+1)(n−m)!

4π(n+m)! Pmn (cos θ)eimφ are the scalar spherical harmonics defined by associated Legendre polynomials Pmn (x).

The radial dependency of the outgoing spherical vector harmonics in Eqs. (4, 5) are the spherical Hankel function of

the first kind, h
(1)
n (kr), with the domain of r restricted to the region of the bounding shell. On the other hand, the

regular spherical vector harmonics vreg,nmj(r) are defined in the region of the bounding sphere. Because of this, their
radial dependency follows the spherical Bessel function jn(kr). The regular spherical vector waves vreg,nmj(r) in Eqs.

(6, 7) take the same forms as their outgoing counterparts vout,nmj(r) but with every h
(1)
n (kr) replaced by jn(kr).

The three vector spherical harmonics, V
(1)
nm(θ, φ), V

(2)
nm(θ, φ), and V

(3)
nm(θ, φ), satisfy the following orthogonal prop-

erty:
∫ π

0

dθ sin θ

∫ 2π

0

dφV(α)
nm(θ, φ) ·V(β)∗

n′m′(θ, φ) = zαnδαβδmm′δnn′ , (8)

where the prefactor z1n = 1 and z2n = z3n = n(n+1). This orthogonality is crucial because it ensures that 1. different
outgoing spherical vector waves vout,nmj(r) are orthogonal to each other in the outer bounding shell and 2. different
regular spherical vector waves vreg,nmj(r) are orthogonal to each other in the inner bounding sphere. Considering
these two orthogonal conditions and the fact that the Green’s function operator in Eq. (3) can be expanded as the
sum of the outer products between vout,nmj(r) and vreg,nmj(r), we identify these two types of spherical vector waves
as the left and right singular vectors of the Green’s function operator in the sphere–shell bounding volume.

The discussion of the spherical vector wave representation in this subsection mostly follows the presentation in Ref.
[1, chapter 2.1], though with different notations for the spherical vector waves and an extra factor of k2 in the Green’s
function. We also adopt a more conventional definition of the scalar spherical harmonics as in Jackson [2]. This leads
to different prefactors in Eqs. (4 – 8) compared to the ones in Ref. [1].

C. Singular values of the Green’s function operator in the sphere–shell bounding volume

Given the spherical wave expansion of the Green’s function in Eq. (3), the singular values of the Green’s function
operator in the sphere–shell bounding volume can be identified as the products between the norms of the unnormalized
singular vectors vnmj(r) and Rgvnmj(r) in their respective domains:

|s(sphere–shell)nmj |2 = k6
∫

Vsphere

|vreg,nmj(r)|2 dr
∫

Vshell

|vout,nmj(r)|2 dr. (9)
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The angular part of the integrals in Eq. (9) can be computed by plugging in the explicit expressions of vreg,nmj(r) and
vout,nmj(r) in Eqs. (4 – 7), which are simplified under the orthogonality relation of the vector spherical harmonics

V(i)(θ, φ) in Eq. (8). The result is several remaining one-dimensional integrals in the radial direction:

|s(sphere–shell)nm1 |2 =

∫ kRsphere

0

x2|jn(x)|2dx
∫ kRouter

kRinner

x2|h(1)n (x)|2dx (10)

|s(sphere–shell)nm2 |2 =

∫ kRsphere

0

{
n(n+ 1)|jn(x)|2 + [xjn(x)]

′2
}
dx

×
∫ kRouter

kRinner

{
n(n+ 1)|h(1)n (x)|2 + |xh(1)n (x)|′2

}
dx, (11)

where Rsphere is the radius of the bounding sphere. The variables Rinner and Router are the inner and outer radii of
the bounding shell, respectively. The one-dimensional integrals in Eqs. (10, 11) can be analytically integrated with
the aid of indefinite integrals of the spherical Bessel functions in Ref. [3], after which we obtain explicit expressions
of the singular values in the sphere–shell bounding volume:

|s(sphere–shell)nm1 |2 =
π2

16
x2
[
J2
n+ 1

2
(x)− Jn+ 3

2
(x)Jn− 1

2
(x)
] ∣∣∣∣

x=kRsphere

x=0

× y2 Re
[
|H(1)

n+ 1
2

(x)|2 −H(1)

n+ 3
2

(y)H
(2)

n− 1
2

(y)
] ∣∣∣∣

y=kRouter

y=kRinner

(12)

|s(sphere–shell)nm2 |2 =
π2

16
x2
{
n+ 1

2n+ 1

[
J2
n− 1

2
(x)− Jn+ 1

2
(x)Jn− 3

2
(x)
]

+
n

2n+ 1

[
J2
n+ 3

2
(x)− Jn+ 5

2
(x)Jn+ 1

2
(x)
]} ∣∣∣∣

x=kRsphere

x=0

× y2 Re

{
n+ 1

2n+ 1

[
|H(1)

n− 1
2

(y)|2 −H(1)

n+ 1
2

(y)H
(2)

n− 3
2

(y)
]

+
n

2n+ 1

[
|H(1)

n+ 3
2

(y)|2 −H(1)

n+ 5
2

(y)H
(2)

n+ 1
2

(y)
]} ∣∣∣∣

y=kRouter

y=kRinner

, (13)

where the functions Jn(x) and H
(1)
n (x) denote the Bessel function and the Hankel function of the first kind. Equations

(12, 13) are the explicit expressions of |s(sphere–shell)nmj |2 we use in the paper to calculate the upper bounds of the coupling
strengths between any two regions in the bounding volume.

II. MAXIMAL CHANNEL STRENGTH IN THE LIMITS OF LARGE BOUNDING SPHERE AND
FAR-FIELD BOUNDING SHELLS

We observe that the maximal channel strength in the sphere–shell bounding domain is asymptotically attained by
the first angular channel of the second polarization state in the limit of large bounding sphere:

max |s(sphere–shell)nmj |2 = |s(sphere–shell)002 |2, for Rsphere � λ, (14)

This is evidenced by Fig. 1, which shows that the relative difference between max |s(sphere–shell)nmj |2 and |s(sphere–shell)002 |2
is smaller than 5% for a bounding sphere with radius Rsphere larger than three times the wavelength λ and the relative
difference asymptotically tends to zero as the radius becomes much larger than the wavelength. The separation
distance d between the two bounding domains and the maximal thickness 2Rr of the spherical shell is assumed to be
10λ and λ, respectively, though our result does not appear to be sensitive to these two parameters.

The channel strength |s(sphere–shell)002 |2 has a simple analytical form in the limits of large bounding sphere and far-field

bounding shell. To show this, we first consider the limit of far-field bounding shell, where |s(sphere–shell)002 |2, according
to Eq. (11), simplifies to

|s(sphere–shell)002 |2 = 2kRr

∫ kRsphere

0

x2|j−1(x)|2dx, for d� λ, (15)



4

where we approximate the spherical Hankel function as h
(1)
n (x) ≈ 1

xe
ixi−n−1 under the condition of d � λ. The

integral in Eq. (15) can be analytically evaluated considering that j−1(x) = cos(x)/x. Its result, under the limit of
large bounding sphere, further reduces to

|s(sphere–shell)002 |2 = k2RrRsphere, for Rsphere � λ and d� λ. (16)

Combining Eqs. (14) and (16), we derive an analytical expression of the maximal channel strength in the limits of
large bounding sphere and far-field spherical shell:

max |s(sphere–shell)nmj |2 = k2RrRsphere, for Rsphere � λ and d� λ, (17)

which, we observe, scales linearly with the maximal radii of both the source and receiver domains.

III. A LOWER BOUND ON THE SUM RULE

The sum rule S =
∑
nmj |snmj |2 is conserved under a unitary transformation from the communication channel basis

to the delta-function basis in real space. Conveniently, we express S as a double integral of the Frobenius norm of

0 2 4 6 8 10

sphere radius, R
sphere

/ 

0

5

10

15

20

5% threshold

FIG. 1. Numerical evidence showing that the maximum channel strength, max |s(sphere–shell)nmj |2, is asymptotically attained by

the first angular channel of the second polarization state, |s(sphere–shell)002 |2, in the limit of large sphere radius Rs relative to the
free-space wavelength λ.
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the dyadic Green’s function over both the source and receiver volumes:

S =

∫

Vs

∫

Vr

||G(r, r′)||2F drdr′. (18)

The Frobenius norm of the dyadic Green’s function reads [4]

||G(r, r′)||2F =
k6

8π2

[
1

(k|r− r′|)2 +
1

(k|r− r′|)4 +
3

(k|r− r′|)6
]

(19)

which monotonically decays with respect to the separation distance, |r − r′|, between two points. This monotonic
decay allows us to lower bound the sum rule by relaxing the separation distance to the largest possible separation
distance, max |r− r′| = d+ 2Rs + 2Rr, between the source and receiver volumes:

S ≥ k4VsVr
8π2(d+ 2Rs + 2Rr)2

+O
(

[k(d+ 2Rs + 2Rr)]
−4
)
. (20)

The variables Rs and Rr denote the maximal radii of the source and receiver domains. For conciseness, we assume
the furthest separated points are in the far field, i.e. k(d+ 2Rs + 2Rr)� 1, so that only the leading term in Eq. (20)
remains. This, of course, can be easily generalized by explicitly including two other higher-order terms with a slightly
more complicated expression.

IV. AN UPPER BOUND ON THE RELATIVE COUPLING STRENGTHS IN THE LARGE-CHANNEL
LIMIT

In this section, we derive large-channel asympotes of the coupling strengths in the sphere–shell bounding volume.
Two differently polarized communication channels exhibit slightly different asymptotes, though both can be bounded
above by a single expression. Together with the lower bound on the total sum rule, we derive an upper bound on the
relative coupling strength for both polarizations. This section provides a theoretical basis for the bound we present
at the end of Section 3A in the paper.

The singular values |s(sphere–shell)nmj |2 have simple analytical expressions in the large-channel limit when the index
n → ∞. They can be derived by substituting the large-n asymptotes of the spherical Bessel and Hankel functions,

jn(x) ∼ 1√
(4n+2)x

(
ex

2n+1

)n+1/2

and h
(1)
n (x) ∼ −2i√

(4n+2)x

(
ex

2n+1

)−n−1/2
, into Eq. (10, 11):

|s(sphere–shell)nm1 |2 =

(
kRsphere

2n

)4(
Rsphere

Rinner

)2n−1
as n→∞, (21)

|s(sphere–shell)nm2 |2 =
1

4

(
Rsphere

Rinner

)2n+1

as n→∞. (22)

While both polarizations decay exponentially as a function of n, the first polarization channel is always smaller than
the second one in the large n limit due to the additional decay of the factor of 1/n4. The value of the second
polarization thus serves as an upper bound for both:

|s(sphere–shell)nmj |2 ≤ 1

4

(
Rsphere

Rinner

)2n+1

as n→∞. (23)

This is an upper bound for the coupling strengths of both polarizations in a sphere–shell bounding volume in the
large-channel limit. The bound only depends on the ratio between the radius of the bounding sphere, Rsphere, and
the inner radius of the bounding shell, Rinner — the smaller the ratio, the faster the decay.

For any two domains that can be separated by a spherical surface, there are two possible sphere–shell bounding
volumes: one that centers around the source region and one that centers around the receiver region. To obtain a
tighter upper bound, we choose the one that centers around the smaller domain because it has the smaller ratio
between Rsphere and Rinner. Considering this and the fact that the number of channels with n-index less or equal to
n is q = 2(n+ 1)2, Eq. (23) can be written as

|s(sphere–shell)q |2 ≤ 1

4

(
1 +

Rmin

d

)−√2q−1
as q →∞, (24)
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FIG. 2. A shell–shell structure (blue-colored inset) that violates the propsed bound by Piestun and de Sterke in Ref. [5]. (b)
The relative coupling strength |sl|2/|s0|2 of the shell–shell geometry, normalized by the 0-th order coupling strength, violates the
proposed bound by Piestun and de Sterke [5] which are their counterparts in the cylinder–shell bounding volume (grey-colored
inset). (c) The relative coupling strength |sl|2/S from the same shell–shell structure, normalized by the sum rule, is correctly
bounded in our approach.

where Rmin = {Rs, Rr} is the smaller of the radius of the source domain Rs and the radius of the receiver domain
Rr, and d is the distance between the two domains. This equation shows the coupling strengths between two regions
always decay sub-exponentially with the total channel index, q, in the large-channel limit.

Lastly, we invoke the domain-monotonicity theorem discussed in Section IIA of the paper which implies that the
coupling strengths |sq|2 between any two domains have to be smaller than their counterparts in a sphere–shell bounding
volume:

|sq|2 ≤ |s(sphere–shell)q |2, for q = 1, 2, ... (25)

Combining this with the upper bound of |s(sphere–shell)q |2 in Eq. (24) and the lower bound of the sum rule S in Eq.
(20), we derive an upper bound on the relative channel strengths in the large-channel limit:

|sq|2
S
≤ 2π2(d+ 2Rs + 2Rr)

2

k4VsVr(1 + d/Rmin)
√
2q+1

, as q →∞. (26)

This suggests that the relative coupling strength between any two domains decay at least sub-exponentially in the
large-channel limit. Equation (26) is a key result presented in our paper and we hereby provide a derivation in this
section.

V. COMPARISON WITH THE RESULTS OF PIESTUN AND DE STERKE

Piestun and De Sterke [5] have analyzed concentric cylindrical objects to obtain a first approximate analysis of the
numbers of well-coupled communications modes in two dimensions. The reason it is an approximation, not a exact
bound, is because of two assumptions they made. First, they assume, for all geometries, the channel strengths |sq|2 are
constant up to a certain channel index, after which the channel strengths fall off rapidly. Second, they assume, for all
geometries, their relative channel strengths |sq|2/|s0|2 are upper bounded by their counterparts in the cylinder–shell

bounding volume, |s(cylinder–shell)q |2/|s(cylinder–shell)0 |2. Under these two assumptions, they derive an upper bound on
the number of well-coupled channels, N , in a cylinder–shell bounding volume:

N ≈
∞∑

q=−∞

|sq|2
|s0|2

≤
∞∑

q=−∞

|s(cylinder–shell)q |2

|s(cylinder–shell)0 |2
. (27)

This expression is meaningful for (circular) cylinders, but is not a “fundamental limit” for any shape. In order for
the inequality in Eq. (27) to be valid, one would need the denominator on the right, the first singular value of the
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cylinder, to be less than or equal to the denominator on the left, the first singular value of any arbitrary domain.
Yet this inequality is not valid in general. One geometry that violates the singular-value inequality, and as a result
also the bound of Eq. (27), is a “shell–shell” geometry that consists of two concentric cylindrical shells as shown
in the blue-colored inset of Fig. 2(a). Its normalized channel strengths, |sq|2/|s0|2, are plotted as the circled blue
line for channel index q from -10 to 10. We assume the inner cylindrical shell has inner and outer radii of 0.3λ
and λ, and the outer cylindrical shell has inner and outer radii of 10λ and 11λ. Nearly all the normalized channel
strengths, |sq|2/|s0|2, of the shell–shell structure surpass the supposed upper bound (black solid line) given by the

normalized channel strengths, |s(cylinder–shell)q |2/|s(cylinder–shell)0 |2, of the cylinder–shell bounding volume. Consequently,

the maximal number of channels N =
∑l=∞
l=−∞ |s

(cylinder–shell)
l |2/|s(cylinder–shell)0 |2 = 10.7 predicted from Eq. (27) is a

number smaller than the one obtained with the actual shell–shell structure N =
∑l=∞
l=−∞ |sl|2/|s0|2 = 16.4.

On the other hand, the approach presented in our paper can correctly bound the response from the same shell–shell
geometry as shown in Fig. 2(b). Our bound is in fact a rigorous upper bound to all geometries because we do not
make any prior assumptions. We do not assume a step-like distribution of the channel strengths (as in Ref.[5]). We
also employ a sum-rule normalization where the relative channel strengths can always be bounded above.
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