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Abstract: Experimental and theoretical studies of colloidal nanoparticles have primarily focused
on accurate characterization and simulation of observable characteristics, such as resonant
wavelength. In this paper, we tackle the optimal design of colloidal-nanoparticle ensembles:
what is the largest possible per-volume optical cross-section, which designs might achieve them,
and can such response be experimentally demonstrated? We combine theory and experiment
to answer each of these questions. We derive general bounds on the maximum cross-sections
per volume, and we apply an analytical antenna model to show that resonant nanorods should
nearly achieve such bounds. We use a modified seed-mediated synthesis approach to synthesize
ensembles of gold nanorods with small polydispersity, i.e., small variations in size and aspect
ratio. Polydispersity is the key determinant of how closely such ensembles can approach their
respective bounds yet is difficult to characterize experimentally without near-field measurements.
We show that a certain “extinction metric,” connecting extinction cross-section per volume with
the radiative efficiencies of the nanoparticles, offers a quantitative prediction of polydispersity
via quantities that can be rapidly measured with far-field characterization tools. Our predictions
apply generally across all plasmonic materials and offer a roadmap to the largest possible optical
response of nanoparticle ensembles.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Colloidal nanorods combine strong plasmonic properties with high structural tunability, offering
promise for applications ranging from optics to nanomedicine to obscurants [1–5]. For many
applications, the key metric is the magnitude of the optical cross-section relative to the volume
or weight of the nanoparticles. Yet there have been significant challenges to fast and robust
experimental characterization of such metrics, and there has been a gap in our theoretical
understanding of the upper limits to such response. In this article, we theoretically predict
the optimum efficiency of colloidal nanorods, defined by per-volume cross-sections, and
experimentally demonstrate gold nanorods approaching their limits, combining a recently
developed theoretical bound framework [6,7] with a modified seed-mediated nanoparticle
synthesis approach and robust characterization techniques. We highlight the key role of reduced
nanorod polydispersity (size and/or shape variations) in achieving the limits and develop a
far-field scattering metric that provides rapid polydispersity characterization.

From a theoretical perspective, a continuum of techniques from analytical Mie-Gans and
effective-medium theories to computational discretization and simulation has enabled modeling
of individual or collective colloidal-nanoparticle properties [8–13]. Yet optimal design, i.e.,
optimization over shape/topology [14], has been far less developed for such nanoparticles, due
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to the complexity of searching a combinatorially large design space. Recently, the advent of
large-scale computational inverse design [15–21], as well as the development of theoretical
frameworks for understanding bounds to light-matter interactions [6,7,22–29], have enabled
preliminary works towards understanding optimal sizes, shapes, and material compositions.
Yet there has been little work comparing fundamental limits to experimentally synthesized
nanoparticles, and no identification of the key parameters that control whether such synthesized
nanoparticles approach their respective bounds.

On the experimental side, there has been a significant lack of quantitative measurements of
the magnitude of the optical response of colloidal nanorods. This stands in stark contrast to, for
example, measurements of the resonant wavelengths of plasmonic nanoparticles, for which there
are many careful measurements that match theoretical predictions [9,30,31]. Yet the contrast
is not surprising given the many challenges to measuring the magnitude of optical response.
First, to cover a wide bandwidth of interest, one must be able to synthesize a wide range of
nanorod aspect ratios, as the aspect ratio is a primary determinant of the resonant frequency. Such
coverage may require multiple synthesis protocols or highly controlled shape purity and byproduct
creation, without which one may be limited to narrow ranges [31]. A second challenge is accurate
structural characterization of the colloids. Conventionally, average size distribution data are
obtained by image analysis of TEM images from a specific sub-population of nanoparticles. To
obtain an unbiased size measurement, it is critical to select statistically representative images with
sufficiently large sampling sizes. However, shape segregation and subjective sampling inherent to
TEM sample preparation of polydisperse rod and rod-sphere mixtures tend to bias measurements.
A third challenge is the measurement of molar extinction coefficients, for which the concentration
of the constituent material, such as gold, requires measurements such as inductively coupled
plasma-optical emission spectroscopy (ICP-OES), which is not readily available. Finally, whereas
spectrophotometers are sufficient to measure extinction [32,33], additional measurement data is
needed to separately measure the absorption and scattering contributions to extinction. For gold
nanorods, even just separate measurements of absorption and scattering have been limited to a
small number of studies [31].

In this article, we adapt theoretical approaches for identifying general bounds to light—matter
interactions, developed in Refs. [6,7], to the specific problem of high-radiative-efficiency
nanorods. We show that a simple optical-theorem-based radiative-efficiency constraint imposes
bounds on the largest polarization currents that can be induced in the nanorods, resulting in
bounds on how strong their cross-sections can be per unit volume of material (Sec. 2). These
bounds depend only on the optical susceptibility χ of the nanoparticles, the frequency ω, and the
radiative efficiency η, and are independent of the shape or size of the nanoparticles. Such bounds
are inherently non-constructive, meaning it is not known whether they can be achieved with real
structures. We apply an antenna-based circuit model [34] of subwavelength nanoparticles to
show that properly designed nanorods can be expected to approach these global upper bounds
through proper tuning of their sizes and aspect ratios (Sec. 3). We validate the analytical antenna
model with high-resolution boundary-element-method simulations [35,36] and optimizations.
Motivated by these theoretical results, we describe a modified seed-mediated synthesis technique
that enables high controllability of the aspect ratios of the nanorods (Sec. 4.) We describe
a combination of approaches to quantitatively characterize the colloid optical cross-sections:
statistical-bias reduction of the TEM-based structural-parameter measurements with scattering
data, molar-extinction measurements enabled by combined ICP analysis and scattering data,
and the use of both a spectrophotometer and an integrating sphere to independently measure
absorption, scattering, and extinction. The synthesized nanoparticles reach within factors of
1.5–2.6 of the global bounds across visible and near-infrared frequencies. The measurements
enable us to verify the theoretical prediction of polydispersity as the key constraint inhibiting
the nanoparticles from reaching the bounds. From the antenna model, we identify a particular
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“extinction metric,” which is the extinction cross-section per volume divided by 1−η, that appears
well-suited for accurate characterization of the polydispersity of an ensemble of nanoparticles (Sec.
5). This work lays a clear pathway to optimal design and synthesis of plasmonic nanoparticles,
and we conclude with a perspective on new questions and opportunities prompted by these results
(Sec. 6).

2. Radiative-efficiency optical cross-section bounds

In this section, we derive bounds to the largest possible cross-section of any plasmonic scatter,
contingent on a minimum allowable radiative efficiency. In many plasmonics applications, large
cross-section (e.g., scattering or extinction) and high radiative efficiency (small optical absorption
in the material) are competing objectives [37]. The highly subwavelength confinement associated
with plasmonics originates in quasistatic resonances, which decouple the resonant wavelength
from the size of the structure. Yet there is no radiation in quasistatic electromagnetism, and the
only dissipation channel is material loss. To increase radiative loss the structure must become
larger, but the introduction of radiation mitigates the quasistatic nature of the high confinement
and tends to reduce the magnitude of the possible cross-section. In this section, we quantify the
tradeoff between large cross-section and high radiative efficiency. We define a single optical
figure of merit that captures this inherent tradeoff, given by σext / V / (1 – η), where σext / V is the
extinction cross-section per scatterer volume, and η is the radiative efficiency. As we discuss in
the following sections, this quantity also serves as a far-field optical measure of the polydispersity
of an ensemble of plasmonic nanoparticles.

We consider the maximum cross-sections that are possible for a given radiative efficiency.
Optical cross-sections σ are defined as the power scattered, absorbed, or extinguished from an
incoming plane wave divided by the plane wave intensity, i.e.,σabs,scat,ext = (2Zbg/|E0 |

2)Pabs,scat,ext,
where E0 is the plane-wave amplitude and Zbg is the impedance of the background medium. Each
of the powers Pabs,scat,ext can be written in terms of work done by or on the polarization currents
induced in the scatterer by the incident field. At a given frequency ω, the polarization field P(x) is
directly proportional to the electric field E(x) through its material susceptibility χ(ω). Extinction
is the work done by the incident field Einc on the induced currents, Pext = (ω/2) Im ∫V E∗

inc·P dx
(known as the optical theorem [38,39]), absorption is the work done by the polarization currents
on the total field, Pabs = (ω/2) Im ∫V E∗ · P dx = (ω Im χ(ω)/ 2|χ(ω)|2 ) ∫V |P|2 dx, and the
scattered power is the difference between the two. To derive bounds on the maximum cross-section
for a given radiative efficiency, we extend the techniques of Refs. [6,7]. The key idea is as
follows. The extinction power is linear in the polarization currents, while the absorbed power is
a quadratic function of the polarization currents. Yet extinction must be larger than absorption,
as scattered power must be nonnegative (in any passive system). This imposes a bound on how
large the polarization field can be, simply by enforcing the constraint Pabs ≤ Pext. In this work,
we extend this analysis by incorporating the radiative-efficiency constraint. Radiative efficiency
is defined as the ratio of scattered power to extinction, ηrad = Pscat/Pext. Requiring the radiative
efficiency to be greater than or equal to some value η implies that absorbed power must be smaller
than the product of 1 − η with Pext, leading to the constraint

Pabs ≤ (1 − η)Pext. (1)

This constraint is a convex, quadratic constraint on the polarization field P. To find upper bounds
on the absorbed power, scattered power, or extinction, one can drop the more general constraint
of Maxwell’s equations, and only impose the constraint of Eq. (1). Then, through straightforward
variational calculus, one can derive analytical upper bounds to the maximum cross-sections of
any scatterer, a calculation performed in Supplement 1. The resulting bounds, normalized to the
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volume V of the scatterer, are

σext
V

≤ (1 − η)
nbgω

c
|χ |2

Im χ
, (2)

σscat
V

≤ η(1 − η)
nbgω

c
|χ |2

Im χ
, (3)

σabs
V

≤ (1 − η)2
nbgω

c
|χ |2

Im χ
, (4)

where nbg is the refractive index of the background medium and c is the speed of light. Eqs. (2–4)
describe the maximum cross-sections per volume for scatterers of any shape. The primary
mechanism to increase the possible cross-section is through the material “figure of merit” [6,40].
|χ |2/ Im χ, which describes the possibility to increase response through large magnitudes of the
susceptibility, |χ |2, while the resonant response is inhibited by losses in proportion to Im χ.

The bounds of Eqs (2–4) apply to any collection of nanoparticles (or scatterers more generally),
whether dilute or with strong multiple-scattering effects. They are independent of the shape and
size of the scatterers. Their domain of validity is the same as the underlying physics assumed
in macroscopic electrodynamics. The bounds do not apply, for example, when a bulk, shape-
independent material susceptibility is not valid. For example, sufficiently small nanoparticles
experience surface-scattering losses with loss rates that depend on the size and shape of the
nanoparticles [41–44]. In this case, one might combine the radiative-efficiency constraint from
above with the quasistatic methods of Ref. [45] to identify size- and shape-dependent bounds on
the cross-sections. A similar approach should be useful for “quantum plasmonic” models, as in
Refs. [46–48], which treat the scattering bodies not as classical Maxwell scatterers but instead
through coupled Maxwell-hydrodynamic models. One can expect in each of these cases that
Eqs. (2–4) are unlikely to be surpassed, but the methods described above should offer rigorous
validity and account for non-classical effects.

Eqs. (2–4) predict that the largest per-volume extinction and absorption cross-sections occur
for zero radiative efficiency (η = 0). This prediction, validated in the next section, arises as a
consequence of the nature of plasmonic resonances. Zero radiative efficiency corresponds to the
limit in which size approaches zero (relative to wavelength), in which case the response is fully
quasistatic and radiation (and scattered power) goes to zero. In this limit, the extinction equals
absorption, and both are proportional to the polarizability of the particle, which scales with its
volume. Hence the per-volume absorption and extinction cross-sections are fixed at nonzero
values in the η = 0 limit. Physically, the field is penetrating the entire volume of the plasmonic
resonator, which is necessarily smaller than the skin depth in at least one direction. As radiative
efficiency is increased from 0, the size increases, and the field no longer penetrates the full
volume, instead being inhibited by the skin depth of the material. At this stage, the cross-sections
no longer scale with the volume of the nanoparticles; at best, they scale with its surface area.
Hence the per-volume cross-sections decrease, and they never recover to their quasistatic values.
(Per-area cross-sections, by contrast, will never be maximized in the quasistatic limit, which
is why previous investigations have found nonzero optimal sizes for such objectives [49].) Of
course, scattering is zero in the η = 0 limit (even on a per-volume basis), because there is no
radiation. Instead, scattering per volume is maximized when η = 1/2.

A natural question is whether the bounds of Eqs (2–4) are achievable. In the next section, we
show through a coupled-mode circuit model that properly designed nanoparticles can approach
these bounds, for many materials and radiative efficiencies.
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3. Antenna model for high-radiative-efficiency nanoparticles

The optical response of a dilute collection of subwavelength plasmonic nanoparticles to plane
waves can be modeled with quantitative accuracy as a collection of lumped circuit elements
[34,50–52]. Nanorods are typically dominated by electric-dipole resonances that can be treated
with the introduction of a capacitance C arising from the tip-to-tip charge separation, a small
Faraday inductance LF, a “kinetic” inductance Lk (arising from nonzero electron mass) that
typically dominates in plasmonic regimes, an Ohmic resistance RΩ indicating the material
absorption when currents are excited in the nanorods, and a radiation resistance Rrad that
encodes the power radiated to the far field by the same currents. Treating the nanoparticle as an
RLC circuit, its resonant frequency ω0 is determined by the inductance and capacitance terms:
ω0 = 1/

√︁
(LF + Lk)C. This frequency ω0 is the frequency at which the absorption and scattering

response of the electric-dipole mode of the nanoparticle will be maximum, and hereafter we
consider the response at this resonant frequency. (Alternatively, the cross-section models below
can be arrived at via the methods of Ref. [53], which are mathematically nearly equivalent, albeit
via a different physical picture.)

To determine the cross-sections of a nanoparticle in this circuit model, we first need to model
the incoming plane wave as a voltage source. An incoming plane wave carries an infinite amount
of power, but there is a finite amount of power in the electric-dipole vector spherical wave,
which is the only component that couples to the electric-dipole mode of the nanoparticle. This
incoming power is given by Pinc =

(︂
3λ2

2π

)︂
Iinc, where Iinc is the intensity of the plane wave, i.e.,

Iinc = |E0 |
2/2Zbg. To identify the available power, we equate the voltage U across the radiation

resistance of the nanoparticle to the incoming power,

U2

2Rrad
= Pinc, (5)

which allows us to solve for the voltage, U =
√

2PincRrad. The current excited in the nanoparticle
is given by the voltage divided by the total resistance, I = U/(Rrad + RΩ). The nanoparticle
acts as a voltage divider circuit between the radiation and Ohmic resistances, and the scattering
and absorption cross-sections are then proportional to the respective power delivery into these
individual channels. Through a bit more algebra (cf. Supplement 1), we find that the cross-sections
of the nanoparticles on resonance are given by

σabs(ω0) = η(1 − η)
3λ2

2π
, (6)

σscat(ω0) = η
2 3λ2

2π
, (7)

σext(ω0) = η
3λ2

2π
, (8)

where λ is the optical wavelength in the background medium and η is again the radiative
efficiency (scattered power divided by extinction), which in this circuit model is given by the
ratio η = Rrad/(Rrad + RΩ). Eqs (6–8) usefully predict that nanoparticle cross-sections divide
the 3λ2/2π relative power available to them amongst absorption and scattering, but they do not
indicate any of the underlying dependencies on nanoparticle size or material.

The cross-section values of Eqs (6–8) can be connected to the susceptibility and volume of the
nanorods through the radiative efficiency, η = Rrad/(Rrad + RΩ). For an electric-dipole nanorod
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“antenna,” the radiation and Ohmic resistances are given by the expressions [34]

Rrad =
2π
3

Zbg
ℓ2

λ2 , (9)

RΩ =
λ

2π
Zbg

Im χ
|χ |2

ℓ

A
(10)

where ℓ is the length of the nanorod and A is its cross-sectional area. (The exact shape and
curvature of the nanorods at their endcaps does not significantly affect these lumped-circuit-
element parameters.) Inserting these resistances into the radiative efficiency expression gives:

η =
V/λ3

V/λ3 + 3
4π2

Im χ

|χ |2

. (11)

Equation (11) formalizes the intuition that radiative efficiency increases with scatterer volume
(relative to cubic wavelength) and decreases with material losses (as measured by Im χ/|χ |2).
The quantitative accuracy of Eq (11) decreases in the extreme limits of radiative efficiency or
material FOM, but as we show in Sec. 5, it can be inverted to predict the volume of optimized
nanorod designs quite accurately. Following straightforward algebra (Supplement 1) leads to the
following expressions for the cross-sections per volume of nanorod particles:

σabs,np(ω0)

V
= (1 − η)2

nbgω

c
|χ |2

Im χ
, (12)

σscat,np(ω0)

V
= η(1 − η)

nbgω

c
|χ |2

Im χ
, (13)

σext,np(ω0)

V
= (1 − η)

nbgω

c
|χ |2

Im χ
. (14)

Equations (12–14), for the actual cross-sections of nanorods at their electric-dipole resonances,
exactly equal the right-hand sides of Eqs. (2–4), which are the upper bounds on per-volume
cross-sections of any scatterers with any shape and any multipolar response. This suggests that
the bounds of Eqs. (2–4) should be approachable with properly designed nanorods.

Figure 1 theoretically verifies that optimally designed gold nanorods can approach the bounds
of Eqs (2–4). Figure 1(a) shows the bounds on extinction cross-section per volume (dashed
lines) for four minimum radiative efficiencies, ranging from 0% to 90%, with the bounds
decreasing as minimum radiative efficiency increases. The solid lines in Fig. 1(a) are boundary
element method (BEM) simulations of gold nanoparticles whose dimensions have been optimized
with a free-software implementation [54] of the COBYLA gradient-free local-optimization
algorithm [55]. One can see that the cross-sections of the nanoparticles, free of any circuit-model
approximations, approach within 10% (and typically even closer) of the global bounds. The
characteristic dependence of both the bounds as well as the nanoparticle cross-sections on the
factor (1 − η) is clarified in Fig. 1(b), where division by this factor causes all of the bounds to
coalesce, and all of the per-volume cross-sections to peak near the same values. The accuracy of
the circuit-model theory is further confirmed in Fig. 1(c), where for both 600 nm and 900 nm
wavelengths, the volumes of the optimal nanorods are shown as a function of radiative efficiency
(markers), and the circuit-theory predictions (solid lines) run directly through the markers. Note
from Eq. (11), and corroborated by this figure, that knowledge of the resonant wavelength and
radiative efficiency is sufficient to identify the volumes of the individual nanorods as well. More
broadly, properly designed nanorods should be globally optimal for absorbing, scattering, and
extinguishing radiation.
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Fig. 1. (a) Eight sets of optimally designed gold nanorods, modeled as ellipsoids with
semi-axis lengths (in brackets) designed for cross-section peaks at 600 nm (left) or 900 nm
(right), have extinction cross-sections per volume σext / V (solid lines, computed via BEM)
that approach the analytical global bounds (dashed lines) of Eqs. (2–4). The maximum
possible cross-section decreases with increasing radiative efficiency η (blue to purple). The
transverse modes contribute little relative weight to the bounds at longer wavelengths and
are not included. (b) The cross-section per volume divided by 1-η collapses all bounds
onto a single curve (black dashed), with the peaks of the simulated nanorod cross-sections
nearly coinciding. (c) Nanorods of a given material have two degrees of freedom, their
aspect ratios and their volumes, which together determine their resonant wavelengths and
radiative efficiencies. The antenna model relating these quantities together, in Eqs. (6–8)
and Eqs. (12–14), predicts the solid curves in blue (600 nm wavelength) and red (900 nm
wavelength). The BEM-simulated optimized nanorods have radiative efficiencies given
by the markers (“x” for 600 nm wavelength, “o” for 900 nm wavelength), showing close
agreement with the antenna model.

We note that Eqs. (6–8) and Eqs. (12–14) require careful attention in the limits when the
radiative efficiency approaches 0 or 1. One might be tempted to think that these limits correspond
to a “perfect absorber” and “perfect scatterer,” respectively. Yet in the limit η → 0, all three
powers (absorption, scattering, and extinction) go to 0 in Eqs. (6–8), implying that the scatterer
does not interact with the incoming radiation at all, invalidating the idea of a “perfect absorber.”
This result is correct theoretically; not only is η the radiative efficiency, it is also proportional to
the coupling of the electric-dipole portion of the incoming wave to the resonator; in the limit
that η→ 0, there is no coupling, and the resonator cannot even absorb the radiation. (Another,
equivalent, explanation comes from Eq. (11): η → 0 is only possible in a lossy material with
V → 0, which similarly causes all three powers to go to zero.) Of course, even if both σabs and V
go to 0 in this limit, their ratio need not go to 0; in fact, the ratio σabs/V is maximized in this limit.
Very similar reasoning can be applied to Eqs. (12–14) in the limit η→ 1, in which case each of
the three powers again go to 0. In Eqs. (12–14) material losses are explicitly included. Hence the
limit η→ 1 requires size V to go to infinity, per Eq. (11). Infinite sizes are in the geometric-optics
limit, with cross-sections proportional at most to the surface area of the structures, such that the
ratio of the cross-section to the volume will tend towards 0. The upshot is that all resonators will
have some amount of material loss and some amount of coupling to incoming (and outgoing)
radiation channels. In such resonators, it is impossible to have “perfect absorbers” or “perfect
scatterers.” Instead, one must satisfy well-known “matching conditions” to optimize the relative
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balance of absorption and radiation [6,56–59]. Moreover, the optimal conditions depend strongly
on whether one wants maximum cross-sections or maximum cross-sections per volume.

4. Experimental results

In this section, we describe the experimental synthesis of nanoparticles that approach the optimal
designs and bounds developed in the previous sections. We use a recently developed one-pot
seed-mediated synthesis of gold nanorod (AuNR) ensembles. The synthesized ensembles have a
range of average aspect ratios, from 2.15 to 7.69, with identical nucleation steps for each but
variations in the timing and volume of the addition of a second growth solution (detailed methods
in Supplement 1). The resulting products are purified via centrifuge (at 3000 rpm for 10 min.) to
remove excess CTAB and Ag complex. As opposed to conventional seed-mediated synthesis,
modifications of the temporal control of the seed and reactant concentration for optimized seed
development favor symmetry breaking towards rod formation and narrow polydispersity [60].
This method produces AuNRs centered at any of a wide range of aspect ratios, with narrow
distributions of nanoparticle dimensions, aspect ratios and volume. While retaining a simple
growth-solution composition (CTAB, HAuCl4, AgNO3, and hydroquinone), this method enables
high shape purity (>96%), avoiding extraneous spheres and cubes that occupy volume but
contribute almost zero extinction at longer wavelengths, where they are off-resonant.

Figure 2 shows representative optical measurements and scanning transmission electron
microscope (STEM) images of two example AuNR ensembles. Labeling the AuNR ensembles
from 1 to 10 based on their aspect ratios (1 smallest, 10 largest), the two ensembles of Figs. 2(b),(d)
are the 5th and 10th ensembles, respectively (Table S1). Ensemble 5 has a mean aspect ratio of
3.7, with average nanorod lengths of 64.2nm and diameters of 17.9nm, while ensemble 10 has
corresponding values of 7.7, 114.8nm, and 15.1nm.

The mean and the standard deviation of the length and width were obtained via image analysis
of STEM images (Image J) and the mean and the standard deviation of the aspect ratio was
calculated. A sampling population of 1000 nanorods was used. To validate the 1k sampling
population, the results obtained from increasing sampling population were compared up to 10k.
We found that increasing sampling size above 1000 did not significantly change the result (Fig.
S1).

Alongside the STEM images are extinction, absorption, and scattering cross-sections in
Figs. 2(a),(c). The extinction spectrum is obtained using Cary 5000 spectrometer. The nanoparticle
concentration is sufficiently dilute to avoid multiple-scattering effects (cf. Supplement 1). To
measure the scattering and absorption contribution separately, we utilize a spectrophotometer with
an integrating sphere detector [61,62] (a detailed descriptions of the measurements is provided in
Fig. S3 and Table S1). It is assumed that the measured absorbance with the solution inside the
integrating sphere detector is equal to the molecular absorption. The molecular scattering was
obtained by subtracting molecular absorption from the extinction.

The shape of the extinction spectra of Figs. 2(a),(c) reflect excellent shape purity and narrow
polydispersity of the AuNR ensembles. One simple metric to evaluate this is by dividing the
extinction intensity at the localized-surface-plasmon wavelength by the intensity at 400 nm
wavelength, which is directly proportional to the concentration of gold atoms (Au (0)) and
minimally influenced by structural resonances [63]: our shown ensembles achieve ratios of 5.2
and 9.1, which are significantly higher than the ratios obtained from conventional seed-mediated
synthesis in the literature [64]. Large ratios imply less byproduct and lower polydispersity
[64,65]. Note that there are a few synthetic protocols recently developed to synthesize AuNRs
with comparable ratio via sophisticated modification of growth process [66]. The product
quality is quantitatively confirmed by representative STEM images of the samples, as shown
in Figs. 2(b),(d). The shape purity is as low as 99%, while the variations in dimensions are
small (Table S1). For a quantitative measure of the polydispersity, we select the relative standard

https://doi.org/10.6084/m9.figshare.20069210
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Fig. 2. Representative results of optical and structural characterization of AuNRs. (a) Extinc-
tion, absorption and scattering cross-sections of AuNR ensemble 5 (mean aspect ratio of
3.7) and (b) a representative STEM image. The inset shows the distribution of aspect ratios.
(c) Extinction, absorption and scattering cross-sections of AuNR ensemble 10 (mean aspect
ratio of 7.7), alongside (d) a representative STEM image. For both STEM images the scale
bar is 100 nm.
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deviation of the aspect ratio (RSD), which is the standard deviation as a percentage of the mean.
The ensembles shown have RSDs as small as 14% (Table S1). This percentage is a key single
measure of the structural variations, as the aspect ratio is the primary determinant of the resonant
wavelength (at highly subwavelength sizes), and variations in the aspect ratio are the key cause of
the broadening of the scattering spectra. The high quality of the product can be ascribed to the
new synthesis techniques described above.

5. Polydispersity: theory and experiment

For an ensemble of nanoparticles to collectively reach the bounds of Eqs. (2–4), the individual
nanoparticles should all have identical resonant wavelengths and radiative efficiencies. According
to the antenna model of Sec. 3, this implies that nanorods should have identical aspect ratios and
volumes. Yet in any experimental synthesis, as discussed above, invariably there is polydispersity
in the volume and aspect ratio. (Variations of length and width are included in variations in
volume and aspect ratio; since nanorods have only two geometric degrees of freedom, one
can select any two of these four parameters as the independent degrees of freedom.) The key
effect of polydispersity is that it creates a distribution of resonant wavelengths, with extinction
cross-sections (per volume) that are reduced at the wavelength of interest. Thus, polydispersity
broadens the collective spectral width and diminishes the peak which impact performance in
applications [67,68].

Polydispersity is generally estimated by image analysis. However, the measurements of the
means and distributions of the particle dimensions may be unrepresentative, due to limited sam-
pling populations. The procedure for purification, sample preparation, and image capture/analysis
can be lengthy. There have been limited efforts to estimate the mean and distribution of the
nanoparticle dimension via other characterization tools to avoid biased measurement and to
enable quick and robust measurements [69–71].

The extinction spectrum of AuNRs has been used to quickly estimate some characteristics of
colloidal AuNRs such as their aspect ratios, shape purity, and polydispersity [64]. For example,
the nanoparticles’ concentration can be derived from the absorbance at 400 nm [63,72]. The
shape purity was accessed based on either the ratio of the magnitude of longitudinal-to-transverse
surface plasmon resonance peak [65] or the ratio between L-LSPR to 400nm and the presence
of a shoulder on the transverse band [64]. The full width at half maximum of the longitudinal
LSPR band has been used as an indirect measure of dispersion of aspect ratio [73,74]. However,
most of the estimation is based on empirical databases, which can be inaccurate when attempting
to account for many variables, including those listed above as well as the resonance energies and
volumes of the rods.

Another approach has been to map absorption-spectrum data to a statistical distribution of
nanorod aspect ratios [70]. This approach can be quite successful if all of the nanorods are
known to be sufficiently subwavelength as to exhibit only quasistatic response, with no scattering.
For larger nanorods with nonzero scattering, however, absorption data alone is insufficient to
disentangle the effects of aspect ratio and size. (Two degrees of freedom cannot be determined
from the measurement of a single quantity.) To generalize beyond quasistatics, one must use a
second measurement characteristic, such as radiative efficiency.

Here, we seamlessly connect theory and experiment to provide a single extinction metric as
an indicator of polydispersity. We describe the theoretical basis for our extinction metric and
provide experimental confirmation of its utility. Taken together, our results further illuminate
that polydispersity is the key constraint inhibiting the nanoparticles from reaching the bounds.

To model the effects of polydispersity across an ensemble, we start with the total extinction
cross-section divided by the total nanoparticle volume, i.e., σext/V =

(︁∑︁
i σext,i

)︁
/(
∑︁

i Vi) , where
i indexes the individual nanoparticles in the ensemble. We can rewrite this expression in terms of
the individual-nanoparticle per-volume cross-sections by multiplying and dividing the term in
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the numerator by Vi, i.e.,
∑︁

i σext,i =
∑︁

i Vi(σext,i/Vi). Thus the collective response can be written,

σext
V
=

∑︁
i Vi

(︁σext
V

)︁
i

V
=
∑︂

i
fi
(︂σext

V

)︂
i
, (15)

where fi is the volume fraction of a particular nanoparticle, fi = Vi/V . The volume fraction fi
represents the percentage of nanoparticles with a particular volume and aspect ratio. Polydispersity
enters in the term (σext/V)i, which is reduced at a particular wavelength due to shifts in the
resonant wavelength.

Figure 3(a) demonstrates the effect of polydispersity on the collective extinction per cross-
section of an ensemble of plasmonic nanoparticles. To isolate the polydispersity effects we use a
smoother Drude-Lorentz model of gold [75], but emphasize that the same effects are seen for
tabulated experimental data, of gold or any other plasmonic material. The blue lines in Fig. 3
are for quasistatic gold nanoparticles with average aspect ratios of 3.15:1 (to achieve resonant
peaks at 600 nm wavelength). We consider polydispersity at the 0%, 10%, and 30% aspect-ratio
RSD levels, and see significant inhibition of the peaks at the higher values. Similar computations
are done for higher aspect ratios (7.1:1, red, peaking at 900 nm wavelength, and 10.87:1, green,
peaking at 1200nm wavelength), for the same three levels of polydispersity. The upper bound of
Eq. (2) is shown in the solid black line. Higher aspect ratios lead to longer-wavelength resonances,
where the bound tends to be higher due to higher values of |χ |2/ Im χ.

Fig. 3. (a) Simulations demonstrating the effects of polydispersity, as measured by the
nanorod aspect ratio relative standard deviation (RSD), on the magnitude of the optical
cross-section of a AuNR ensemble. Without any polydispersity (solid lines), nanorods
with aspect ratios of approximately 3:1, 7:1, and 11:1 are able to reach the upper bound
(solid black) for extinction cross-section per volume. The dot-dash and dashed lines are
simulations with fixed volumes and Gaussian distributions of aspect ratios, with RSD at the
10% and 30% levels. (b) The theoretical upper bound to the extinction metric σext/V/(1 − η)

(solid line) is nearly approached by BEM simulations with RSD= 0% (blue circles). The
ten experimentally synthesized and characterized AuNR ensembles (red) have measured
RSD ranging from 14% to 23%; using the same RSD in BEM simulations leads to nearly
matching theoretical predictions (orange circles). Surprisingly, the experimental data lies
above the theoretical simulations, which we expect may be due to a slight overestimation of
the RSD from the TEM analysis. Experimental data from Ref. [31] (green triangles) shows
a smaller extinction metric due to higher RSD. It is apparent that the synthesized nanorods
are within factors of 1–2 of the bounds, and that the minimal polydispersity is the key factor
responsible for the gap.

Our analysis further enables a means to experimentally characterize polydispersity from far-
field scattering data in lieu of near-field imaging. We have identified two controlling parameters
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for the cross-sections of ellipsoidal plasmonic nanoparticles: aspect ratio, and volume relative to
cubic wavelength. In tandem, these parameters control the resonant frequency and the radiative
efficiency of the nanoparticles at that frequency. The extinction cross-section per volume is
itself a useful measure of the total power the nanoparticles take from the incident waves, per
unit material volume, but its maximum depends on the radiative efficiency of the underlying
nanoparticles, which depends on their average aspect ratios as well as their volumes relative to
the wavelength. But we can identify a new metric, which we term the “extinction metric,” which
is the extinction cross-section per volume divided by the 1 − η:

Extinction metric =
σext

V(1 − η)
. (16)

The extinction metric has two very useful properties: (1) on resonance it equals the quantity
(nbgω/c)(|χ |2/Im χ), which depends only on the known material constants, and (2) it comprises
easy-to-measure quantities: it can be computed from far-field scattering data. Note that σext /
V is calculated by measuring the intensity at 400 nm and L-LSPR from extinction spectrum (a
detailed description of the calculation is provided in Supplement 1). Thus the uncertainty from
image analysis is eliminated.

In any experimental measurement of the extinction metric for nanoparticles, the extinction
metric will invariably fall short of its on-resonance value (which also equals its upper bound) due
to polydispersity. The degree to which the extinction metric falls short is a measure of how far
off-resonance that subset of the nanoparticles is, which directly correlates with the polydispersity
of the distribution. Thus the extinction metric enables quantitative identification of relative
polydispersity with only far-field scattering data.

Figure 3(b) shows the extinction metric as a function of wavelength. The upper bound (now
for tabulated gold optical constants [76]) is shown in solid blue and increases as a function of
wavelength due to the increase in the normalized material metric, (ω/c) |χ |2/ Im χ, for gold in
this range. The upper bound is compared to the experimentally obtained extinction metric for
nanoparticle colloids with resonant wavelengths ranging from 627 nm to 1190 nm.

The experimental extinction per volume shows a wavelength-dependence similar to that of
the bound but falls about a factor of 3 short in magnitude. We can theoretically show that this
shortfall is primarily due to polydispersity (of both volume and aspect ratio). First, we perform
BEM simulations of each colloid distribution using only the average nanoparticle lengths and
widths and assume 0% polydispersity. We model each nanoparticle as a circular cylinder with
hemispherical endcaps, but the exact endcap shape simulated makes little difference. These
simulations (blue circles) approach the upper bounds, as expected from the antenna model of Sec.
3, and are similarly much larger than the experimental values. To model the synthesized colloids,
we simulate their experimentally characterized length/width distributions. We take the individual
length/width data collected via STEM, use a simple clustering algorithm to reduce the number of
data points, and then run a BEM simulation for every remaining data point, for every colloid.
These simulations, which account for polydispersity but no other non-ideality, result in the orange
circles in Fig. 3(b), which closely track the experimental results. This confirms the claim that
polydispersity is the key factor controlling how closely the upper bounds can be approach.

Also included in Fig. 3(b) are experimental measurements from Ref. [31]. It is apparent that
the extinction metrics for the gold nanorods synthesized in this study are 1.5 to 2.6 times higher
than that data, over the broad range of wavelengths. This is explained by the low polydispersity;
as one indicator of this, the RSD of the aspect ratios range from 14% to 23% (Table S1), quite
small values that are corroborated by the visual uniformity of the nanorods in the STEM images
of Figs. 2(b),(d). The improvements of these nanorods relative to previous results confirms the
efficiency of the newly developed synthetic protocol.

Our theoretical framework can further provide quantitative estimates of polydispersity from
the extinction metric, or vice versa. Figure 4 shows the dependence of the extinction metric as a

https://doi.org/10.6084/m9.figshare.20069210
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function of polydispersity. There are two further variables to account for: the resonant wavelength,
for which we include 700 nm (green), 800 nm (red), and 900 nm (blue) in the figure, as well as
the average AuNR volume relative to a cubic wavelength. As expected intuitively, the extinction
metric decreases as polydispersity increases, because higher polydispersity induces a broadening
of the extinction spectrum. The degree to which polydispersity diminishes the extinction metric
is also dependent on the average volume: larger volumes indicate larger nanoparticles, which are
less sensitive to polydispersity as their spectra has already been broadened by their increased
radiative efficiencies. Conversely, smaller nanoparticles by average volume see a more precipitous
decline in their extinction metrics. Included in Fig. 4 are experimental data points (circular
markers), using three linearly interpolated data points from the ten ensembles shown in Fig. 3(b).
The average volumes of the ensembles range between 10−5λ3 and 10−4λ3, and lie just above the
theoretical predictions. The close agreement of theory and experiment demonstrate the utility of
this metric for nanoparticle characterization.

Fig. 4. Extinction metric σext/V/(1 − η) as a function of polydispersity. Increased
polydispersity as measured by aspect-ratio RSD, reduces the extinction metric in a predictable
and quantifiable way, for different wavelengths (blue, red, and green colors) as well as
different average volumes (solid, dashed, and dotted lines) of the nanoparticles. Small-volume
nanoparticles have smaller linewidths that make them more sensitive to polydispersity, while
at longer wavelengths the value of |χ |2/ Im χ is larger, increasing the starting point for the
extinction metric. The circular markers represent measured data from the AuNR ensembles,
agreeing well with the theoretical predictions.

The theory utilized for Fig. 4 requires high-quality optical-constant data, for quantitative
predictions of the experimental data. We find that data from Ref. [62] shows good agreement with
experiment (as in Fig. 3(b)), but it has a well-known discontinuity around 1250 nm wavelength.
This discontinuity makes it difficult to make smooth predictions of the effects of polydispersity at
longer wavelengths, which is why Fig. 4 contains wavelengths up to 900 nm. Note, however, that
our experimental data has RSD values ranging from 14-23%, a relatively small range for which
the theoretical curves (and experimental outcomes) all lie relatively close to each other. Smaller
RSDs show much larger variance in their predicted extinction metric; achieving the synthesis
and theoretical characterizations of such nanoparticles will be the subject of future work.
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6. Conclusions

The key results of this work are three-fold: (1) in tandem, recent advances in experimental
synthesis and theoretical bounds can enable colloidal nanorods to achieve maximum optical
efficiencies, (2) polydispersity is a key variable to be minimized to achieve that maximum
efficiency, and (3) polydispersity can be characterized through far-field scattering measurements
encoded in a single “extinction metric.” Looking forward, these results open multiple avenues of
opportunity. After colloidal synthesis, post-processing of the nanoparticles is a mechanism for
reducing polydispersity. The irradiation of gold nanorod colloids with a femtosecond laser can
be tuned to induce controlled nanorod reshaping, yielding colloids with exceptionally narrow
localized surface plasmon resonance bands (albeit at reduced solution volumes) [77]. Per Fig. 3,
such reductions could enable 3X further enhancements of the peak optical cross-sections of gold
nanoparticles, with even larger possible enhancements in materials such as silver or aluminum.
From a materials perspective [40], the synthesis of lower-loss [78–80] and even possibly lossless
[81] materials offers a pathway to even larger cross-sections than those of such conventional
plasmonic materials, and could be combined with laser-reshaping and alternative polydispersity-
reduction techniques. Another tantalizing opportunity is the synthesize of nanosized flakes of 2D
materials, for which a similar optical-response bound framework can be applied [45], but whose
underlying resonance theory (e.g., size and aspect-ratio dependencies) is very different due to
the dimensionality. The potentially very small losses of graphene and similar materials [82]
may enable larger efficiency enhancements, but they will require significant improvements in
the controlled synthesis of such patterned 2D materials. Clearly, there is significant opportunity
at the interface of theoretical design and chemical synthesis for maximum-efficiency optical
nanoparticles.
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SI 1.0 Methods

Materials: 

Hexadecyltrimethylammonium bromide (CTAB) was purchased from GFS chemicals.  HAuCl4, 

AgNO3, sodium borohydride and hydroquinone were purchased from Aldrich.  

Synthesis of Au NRs:  

The Au seeds were prepared according to the typical synthetic route.1   0.364g of CTAB was added 

to 10ml of 0.25 mM HAuCl4.  The solution was briefly sonicated (30 sec) and kept in a warm 

water bath (40C) for 5 min to completely dissolve CTAB and left at 25C for 10 min (solution 

A).  A 0.01 M NaBH4 solution was prepared and refrigerated (3C) for 10min.   0.6ml of 0.01M 

NaBH4 solution was quickly added drop wise to solution A while stirring at 800 rpm causing the 

color of solution to become light brown as Au seeds form.  Stirring continued for 1 minute before 

aging the seeds for 5 minutes prior to use in all experiments.   

The AuNRs were prepared according to the scale up protocol.2,3   The growth solution was 

prepared by mixing HAuCl4 (500 µL, 0.1 M), AgNO3 (500 µL, 0.1 M), CTAB (0.1g).   Next, 

hydroquinone (1.25 ml, 0.1M) was added to the growth solution as a mild reducing agent.  Initially, 

350 µl of growth solution was added into seed solution.  After 2 hours, an aliquot of growth 

solution  was added at certain intervals to obtain a targeted aspect ratio and volume of the rods.   

The number of addition,  the volume of the aliquot, and the length of the interval determines the 

final aspect ratio and volume of the rods.     The as-made solution was centrifuged at 3000 rpm for 

20 min to remove large AgBr particles.   The supernatant containing AuNRs was collected and 

centrifuged at 12,000 rpm for 20 min.  Nine tenths of the supernatant was discarded and the 

concentrated AuNR sediment was collected and redispersed in 5 mM CTAB solution.   The 

centrifugation was repeated 2 more times to ensure [CTAB] in AuNR dispersion to be 5 mM     The 

stock solution was diluted with 5 mM CTAB solution to obtain a proper optical intensity.   The 

particle concentration of NR solutions was 11010/ mL which is at least 3 orders of magnitude 

lower than the concentration  at  which multiple scattering starts to impact the measurement of the 

particles of similar volume. 4



Optical and TEM Characterization. Ensemble extinction spectra were acquired with a Cary 

5000 UV−vis−NIR spectrophotometer (Agilent) from 200 to 1350 nm. The absorption spectra 

were obtained by attaching diffuse reflectance accessories (integrating sphere) from 350 nm to

1350 nm. The scattering spectra were calculated by subtracting the absorption from the extinction 

for each sample measurement.   

Morphology and mean size of nanoparticles were determined by TEM  and STEM (FEI Talos at 

200 kV).  For each sample, more than 1000 particles were measured to obtain the average size and 

the size distribution (Image J, NIST).

Absorbance measurements were performed with a Cary 5000  spectrometer equipped with a 150 

mm integrating sphere (IS) detector.  The spectrum was scanned from 200 nm to 1350 nm in 

increments of 1 nm with an integration time of 0.1 s, and a slit width of 2 nm.   
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Fig. S1.   The relationship between the sampling number and RSD (%) of aspect ratio (data 
obtained from NR 2 shown in Table S1).  When the sampling number exceeds 1000, the RSD does 
not significantly change (within 0.2 %).  



SI 2.0  Estimation of optical response from experimantal measurement

The measured extinction intensity (IL-LSPR : Intensity at longitudinal localized surface plasmon resonance 
measured in 1cm path length cuvette) is converted to an extinction cross-section by calculating the 
molecular extinction coefficient () according to Beer-Lambert law.5

 =
𝐼𝐿―𝐿𝑆𝑃𝑅

𝐶
=

𝐼𝐿―𝐿𝑆𝑃𝑅

𝐼400 ×
0.0005

1.07 × 𝑊𝐴𝑢

𝑉 × 𝜌𝐴𝑢

Where  is molar extinction coefficient, V is the average volume of the particle and C is molar concentration 
of the particles.  NA is Avogadro’s number. 𝑊𝐴𝑢 is the atomic weight of gold  and 𝜌𝐴𝑢is the density of gold. 

 I400  is the intensity at 400 nm.   𝐼400 × 0.0005
1.07

 is the molar concentration of Au (0).1   The molar extinction 
coefficient ε ( L mol−1 cm−1) is directly related to the extinction cross section σ (in units of cm2 ) via the 
Avogadro constant 6:

𝑒𝑥𝑡 = 1000 ln(10) 
𝑁𝐴

= 3.82 × 10―21 𝜀 

= 3.82 × 10―21 ×
𝐼𝐿―𝐿𝑆𝑃𝑅

𝐼400 ×
0.0005

1.07 × 𝑊𝐴𝑢

𝑉 × 𝜌𝐴𝑢

𝑒𝑥𝑡

𝑉 =
3.82 × 10―21 × 𝐼𝐿―𝐿𝑆𝑃𝑅

𝐼400 ×
0.0005

1.07 × 𝑊𝐴𝑢
𝑉 × 𝜌𝐴𝑢

×
1
𝑉 

=   
3.82 × 10―21 × 𝐼𝐿―𝐿𝑆𝑃𝑅

𝐼400 ×
0.0005

1.07 × 𝑊𝐴𝑢
𝜌𝐴𝑢

The volume is canceled out. Thus extinction metric can be calculated only by 𝐼𝐿―𝐿𝑆𝑃𝑅 and 𝐼400. 



Note that   intensity at 400 nm is critical to estimate Au (0) concentration.   It has been known 

from the previous validation that I400 = 1.2 corresponds to [Au (0)] = 0.5 mM within a range of 

particle size.1  This relation is validated by ICP-OES analysis.  The samples were digested 

following the procedure described in the reference. 5   The concentration of Au was determined by 

averaging the values from 4 measurement (standard deviation was shown as an error bar in Fig.S1).  

We found that the previous empirical equation slightly underestimates Au (0) concentration for 

the volume of the rods used in our experiment.  The equation was adjusted for better estimation as 

shown in Fig. S1 where I400 = 1.07 corresponds to [Au (0)] = 0.5  mM .    
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Fig. S2.   The relationship between the optical density at 400 nm (I400) and  Au (0) concentration.  
The adjusted empirical equation (grey dash line) is in good agreement with the measurement 
from   ICP-OES analysis.    

Note that the calculation of extinction cross section of an isolated nanorod assumes that the 

incident light is linearly polarized along the long axis of the rod.  Therefore, only longitudinal 



peak shows up.   In the ensemble measurement, Au NRs are randomly oriented with respect to 

the propagation vector of the incident light.   To compare the experimental values with 

theoretical value which is calculated (simulated) based on the propagation vector of the incident 

light being parallel to the axis of the rod, experimental values must be rescaled to account for the 

random orientation distribution of experimental ensemble.5     In the steady state, the nanorods 

rotate in all directions with equal probability.  The orientation distribution of the AuNR major 

axis is then homogeneous. 7

𝐶𝑒𝑥𝑡,𝑠𝑡𝑒𝑎𝑑𝑦,𝑧 = 1
4𝜋∫2𝜋

0 ∫𝜋
0 𝐶𝑒𝑥𝑡,(𝜃,𝜑),𝑧 sin 𝑑𝜃𝑑𝜑 = 1

3
 𝐶𝑒𝑥𝑡,𝜃=0      

𝐶𝑒𝑥𝑡,𝜃 = 𝐶𝑒𝑥𝑡,𝜃=0𝑐𝑜𝑠2𝜃     

Thus the factor of 1/3 was used to rescale experimentally obtained extinction cross section. 

The scattering efficiency (η) is defined as the ratio of the scattering cross section (scat) to the 

total extinction cross section (ext) at the resonance and is expressed as: 

 = |𝑠𝑐𝑎

𝑒𝑥𝑡
|
𝑅𝑒𝑠

                             

Finally, extinction metric, ext/(1-)V   is calculated based on the measured  scattering efficiency.  



SI 3.0  Optical and Structural Characterization of AuNRs

Fig. S 3.  TEM images and UV-Vis-NIR spectra of the AuNRs.    The scale bar is 200 nm.  Note 
that in NR 9 and NR10,  a small bump is shown  between L-LSPR and T-LSPR which arises 
from multipole resonance due to the large aspect ratio. 



Table 1.  Summary of optical and physical characterization of AuNRs 

L-LSPR Aspect ratio Length (nm) Width (nm) Volume (nm3)

 (nm)

extinction 
cross section

 Scattering 
efficiency 

mean stdev mean stdev mean stdev mean stdev

Shape 
purity 

(%)

NR1 627 1.07E+03 0.15 2.15 0.35 48.43 5.3 22.98 3.5 17424.93 5649.41 97

NR2 664 1.02E+03 0.23 2.36 0.34 52.83 6.21 22.69 3.28 18876.23 6347.51 98

NR3 683 8.35E+02 0.25 2.76 0.53 49.8 7.72 18.57 4.03 12779.4 6442.96 97

NR4 728 3.29E+02 0.18 3.17 0.7 36.07 6.3 11.76 2.67 3772.34 2070.28 98

NR5 784 4.94E+02 0.27 3.64 0.7 64.18 9.56 17.92 2.36 14977.56 4726.34 96

NR6 810 7.08E+02 0.27 3.88 0.61 71.73 6.52 18.77 2.3 18323.91 4619.54 97

NR7 890 6.47E+02 0.2 4.8 0.75 84.94 7.2 17.95 2.16 20174.14 4657.18 98

NR8 990 9.09E+02 0.3 5.23 0.97 98.52 7.86 19.27 2.71 27236.9 7140.2 98

NR9 1066 4.09E+02 0.2 6.71 1.55 83.58 12.48 12.93 2.82 11024.66 5099.62 99
NR10 1190 3.38E+02 0.16 7.69 1.2 114.79 14.9 15.07 1.46 19775.65 5035.43 99

SI 4.0  Radiative-Efficiency-Constrained Optical Cross-Section Bounds
In this section we derive the bounds (fundamental limits) for cross-sections that are presented in 

the main text. We start with the expressions for the extinguished, absorbed, and scattered powers:

𝑃ext =
𝜔
2 Im

𝑉
𝑬∗

inc ⋅ 𝑷 d𝑥#(S1)

𝑃abs =
𝜔
2

Im χ
|χ|2

𝑉
|𝑷|2 d𝑥 #(S2)

𝑃scat = 𝑃ext ― 𝑃abs#(S3)

We can now work out bounds on each of the three quantities, subject to the constraint on radiative 

efficiency, that 𝑃abs ≤ (1 ― 𝜂)𝑃ext. We start with extinction, whose bound is the solution of the 

optimization problem :



max
𝐩

 
𝜔
2 Im 𝐞†

inc𝒑

s.t.
Im 𝜒
|𝜒|2 𝒑†𝒑 ≤ (1 ― 𝜂) Im 𝐞†

inc𝒑 ,

where to simplify notation we assume a discrete numerical basis, for which 𝒆inc and 𝒑 are discrete 

versions of their continuous counterparts, and the dagger symbol indicates the inner product, 

counterpart to spatial integration in the continuous case. For this optimization problem one can 

form the Lagrangian 𝐿, with Lagrange multiplier 𝜆 (rescaled by 𝜔/2):

𝐿 =
𝜔
2 Im 𝒆†

inc𝒑 + 𝜆
Im 𝜒
|𝜒|2 𝒑†𝒑 ― (1 ― 𝜂) Im(𝒆†

inc𝒑) .

Differentiating with respect to 𝒑† (while keeping 𝒑 fixed) gives :

∂𝐿
∂𝒑† =

𝜔
2

𝑖
2(1 ― 𝜆(1 ― 𝜂))𝒆inc + 𝜆

Im 𝜒
|𝜒|2 𝒑 .#(S4)

Setting Eq. (4) equal to zero gives an expression for the optimal polarization field 𝒑; substituting 

that expression into the radiative-efficiency constraint yields the value of the Lagrange multiplier, 

𝜆 = ―1/(1 ― 𝜂). Finally, the optimal 𝒑 is given by 𝒑 = 𝑖(1 ― 𝜂)(|𝜒|2/Im 𝜒)𝒆inc, giving a bound 

on the extinction power of 𝑃ext ≤
𝜀0𝜔

2 (1 ― 𝜂)|𝐸0|2𝑉, where we have taken an incident plane wave 

with amplitude 𝐸0, a scatterer volume 𝑉, and re-introduced the free-space permittivity 𝜀0 that we 

had dropped for convenience earlier. Then, the cross-section is given by the extinguished power 

divided by the incident plane-wave intensity, which is given by 𝐼inc =
1

2𝑍𝐛𝐠
|𝐸0|2. For a 

nonmagnetic medium, the background impedance is given by 𝑍bg = 𝑛bg𝑍0, where 𝑛bg is the 

background refractive index. Finally, inserting all of these expressions leads to the bound on cross-

section per volume of (replacing 𝜀0/𝑍0 with 𝑐, the speed of light)



𝜎ext

𝑉 ≤ (1 ― 𝜂)
𝑛bg𝜔

𝑐
|𝜒|2

Im 𝜒 .#(S5)

We can repeat this process with the other two power quantities, absorption and scattering. The 

process for absorption is very similar. Our optimization problem is now

max
𝐩

 
𝜔
2

Im 𝜒
|𝜒|2 𝒑†𝒑

s.t.
Im 𝜒
|𝜒|2 𝒑†𝒑 ≤ (1 ― 𝜂) Im 𝐞†

inc𝒑 ,

leading to a Lagrangian of the form

𝐿 =
𝜔
2

Im 𝜒
|𝜒|2 𝒑†𝒑 + 𝜆

Im 𝜒
|𝜒|2 𝒑†𝒑 ― (1 ― 𝜂) Im(𝒆†

inc𝒑) .

Now, differentiation and substitution lead to the same optimal 𝒑 of 𝒑 = 𝑖(1 ― 𝜂)𝒆inc, leading to 

an absorption bound of 𝑃abs ≤
𝜀0𝜔

2
|𝜒|2

Im 𝜒
(1 ― 𝜂)2|𝐸0|2𝑉. Dividing by the incident intensity of the 

plane wave, the cross-section bound is:

𝜎abs

𝑉 ≤ (1 ― 𝜂)2
𝑛bg𝜔

𝑐
|𝜒|2

Im 𝜒 .#(S6)

Finally, the scattered power can be optimized in the same way. It turns out the optimal currents 

are the same, for the third, time: 𝒑 = 𝑖(1 ― 𝜂)𝒆inc, which leads to a cross-section bound of

𝜎scat

𝑉 ≤ 𝜂(1 ― 𝜂)
𝑛bg𝜔

𝑐
|𝜒|2

Im 𝜒 .#(S7)

Thus we have derived the three key bounds of the manuscript.

SI 5.0  Antenna-Model-Based Expressions for Nanorod Cross-Sections

We start with the expression for the radiative efficiency given in the main text:



𝜂 =
𝑉/𝜆3

𝑉/𝜆3 + 3
4𝜋2

Im 𝜒
|𝜒|2

.

We can equivalently write this in terms of the volume of the scatterer, finding

𝑉/𝜆3 =
𝜂

1 ― 𝜂
3

4𝜋2
Im 𝜒
|𝜒|2 .

Taking this one step further, we can even use it to write the cube of the resonant wavelength in 

terms of radiative efficiency, volume, and material loss:

𝜆3 =
1 ― 𝜂

𝜂
4𝜋2

3
|𝜒|2

Im 𝜒 𝑉.

Then we can write the extinction cross-section of the antenna, for example, as

𝜎ext = 𝜂
3𝜆2

2𝜋 =
3𝜂

2𝜋𝜆 𝜆3 =
3𝜂

2𝜋𝜆
1 ― 𝜂

𝜂
4𝜋2

3
|𝜒|2

Im 𝜒 𝑉 =
2𝜋
𝜆 (1 ― 𝜂)

|𝜒|2

Im 𝜒 𝑉 =
𝑛bg𝜔

𝑐 (1 ― 𝜂)
|𝜒|2

Im 𝜒 𝑉.

This is exactly the expression given in the main text, and matches the bound expression as well, 

again showing that nanorods should be able to achieve the bounds. The derivation for the absorbed 

and scattered powers follow exactly the same procedure.
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