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We solve a long-standing set of problems in optics and waves: why does a volume 
have only so many useful orthogonal wave channels in or out of it, why do coupling 
strengths fall off dramatically past this number, and, indeed, just what precisely 
defines that number? Increasingly in applications in communications, information 
processing, and sensing, in optics, acoustics, and electromagnetic waves generally, 
we need to understand this number. We can numerically find such channels for 
many problems, but more fundamentally, these questions have arguably never had 
a clear answer or physical explanation. We have found a simple and general result 
and intuition that lets us understand and bound this behavior for any volume. This 
is based on a tunneling that has been somewhat hidden in the mathematics of 
spherical waves: beyond a certain complexity of the wave, it must tunnel to escape 
the volume. By counting the number of waves that do not have to tunnel, we get a 
simple and precise number or bound for well-coupled channels, even for arbitrary 
volumes. The necessary tunneling for other waves explains the rapid fall-off in their 
coupling, and shows all such waves do escape to propagation to some degree after 
tunneling. This approach connects multipole expansions in electromagnetic 
antennas and nanophotonics smoothly to apparently evanescent waves in large 
optics. It works over all size scales, from nanophotonics, small radio-frequency 
antennas, or acoustic microphones and loudspeakers up to imaging optics with 
millions of channels, and gives a precise diffraction limit for any volume. 

Introduction 
With emerging nanophotonics, increasingly we can design[1], [2] and fabricate sophisticated 
objects down to wavelength sizes or below. Growing bandwidth demands in radio-frequency 
(r.f.) wireless communications require we exploit spatial channels more effectively; resulting 
antenna systems are growing to increasingly sophisticated structures many wavelengths in 
size[3]–[5]. Information processing, such as for artificial intelligence, requires ever increasing 
numbers of channels that optics could provide, whether for improved inference in neural 
networks[6] or more generally in optical interconnects[7] and processing[8]. Numbers of strong 
channels can determine how much and what kind of information we can measure in sensing 
applications like microscopy or imaging or how many designable elements or basis functions we 
need in design. A core question, both for design and applications, is whether we can understand 
how many different (i.e., orthogonal) waves or channels can propagate in and out of objects or 
volumes. Such counting is increasingly relevant in optics now that we can control and detect 
light mode by mode[9]–[11]. This question has arguably never had a simple answer, especially 
as we move through objects of scales of a few wavelengths. Though we may believe that 
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diffraction limits lie behind such counting, and we can certainly calculate the orthogonal 
channels and their coupling strengths for any specific case[12], we lack any simple general 
model and intuition for important key behaviors (see, e.g., examples in[12] and in many other 
analyses[13]–[18]): why do the coupling strengths tend to fall off rapidly past some number of 
well-coupled channels, and, indeed, just what defines that number? 

 

Fig. 1. Comparison of an evanescent plane wave and an initially tunneling spherical 
wave. (A) A plane wave emerging from an infinite surface in the y – z plane, showing 
evanescent (tunneling) decay in the positive x direction. (B) A spherical wave emerging 
from a spherical surface; initial tunneling behavior changes to propagating behavior 
past the escape radius. Both waves start with unit overall amplitude, at the plane surface 
for (A) and at the sphere surface for (B), and with the same decay in distance. The plane 
wave in (A) has a transverse pattern corresponding to 1.034zn   and 0.674yn   

periods per wavelength in the z and y directions, respectively, equivalent to 2z zk n  

and 2y yk n radians per wavelength. The spherical wave in (B) has a spherical 

harmonic angular form with 22n   and 12m  . The spherical surface has radius 
2.9or   wavelengths. The wave in (B) has the phase where it corresponds to the nC  

Riccati-Bessel function.  The escape radius is 3.58 wavelengths, so 0.68  
wavelengths larger than or . The tunneling barrier height starts at 0.524 in both cases, 

being 2 2 2 2 21 [( ) / ] 1z y z yn n k k k      for plane waves and 2[ ( 1) / ( ) ] 1n n kr   for the 

spherical waves, for radial distance r.  
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We show here that there is a useful and unified approach with simple results and physical 
intuition. This approach spans continuously from sub-wavelength objects to large optical scales. 
A key concept is the idea of tunneling escape of spherical waves. We find the onset of this 
tunneling can be precisely defined, allowing a clear counting of strongly coupled channels that 
propagate without tunneling. Past this number, the tunneling behavior explains the fall-off and 
just how rapid it must be. The complementary problem of waves focusing into a volume 
similarly obeys a required onset of tunneling that explains the difficulty of focusing past 
diffraction limits. Since any finite volume can fit within some bounding sphere, we acquire 
simple upper bounds for coupling in and out of arbitrary volumes. The onset of tunneling also 
gives a precise definition of a diffraction limit for volumes. 

Spherical waves and tunneling 
Just as plane waves describe waves from (infinite) plane surfaces, so spherical waves based on 
spherical harmonic and spherical Bessel functions usefully describe waves from spherical 
surfaces or finite objects. Their mathematics is well understood, e.g., as in scattering from 
spherical objects[19]–[23] and from multipole expansions of fields[24], [25]. (See supplementary 
text S1 and S2 for details.)  

Fig. 1 illustrates the argument. For infinite plane waves (Fig. 1(a)), if the wave varies too rapidly 
in the y and z directions, we have evanescent decay in the x direction. Such a truly evanescent 
(literally, “vanishing”) wave never escapes to propagate in the x direction.  Fig. 1(b) shows a 
spherical wave that, at a radial distance or  from the center, has an amplitude in angle given by a 
spherical harmonic function of order n. Such spherical waves retain their angular shape as they 
expand radially.  

Suppose this spherical wave initially varies too rapidly (in transverse directions, on the sphere 
surface) compared to a wavelength. Then, this wave still expands spherically, but must tunnel 
radially until it reaches some escape radius escnr  for this n. By this point, its transverse variation is 
slow enough that it can start to propagate.  

Though the wave amplitude remaining after tunneling may be quite small, that wave will 
continue expanding, settling to ~1/radius decay of its amplitude, as in a spherically expanding 
propagating wave. So, waves from finite bodies, even if they start out somewhat evanescently, 
do not remain so; at least to some degree, they escape to propagation.   

Scalar waves 
To justify this argument, we analyze spherical waves, starting with the scalar case, with a 
Helmholtz wave equation   

    2 2 0U k U  r r  (1) 

for a wave ( )U r  of frequency of  in a uniform medium such as vacuum, air, or an isotropic 

dielectric. (For some wave velocity v, the wavevector magnitude 2 / /ok v    , where the 
wavelength and angular frequency are /o ov f  and 2 of  , respectively.) Using complex 
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waves with time-dependence exp( )i t , a plane wave solution has the form ( ) exp( )U i r k r  in 

space, with wavevector ˆ ˆ ˆx y zk k k  k x y z , where xk , yk , and zk  are the wavevector components 

in the x, y, and z directions (with corresponding unit vectors x̂ , ŷ , and ẑ ). Such a solution 

exp( ) exp( ) exp( )exp( )x y zi ik x ik y ik z k r , of Eq. (1), implicitly in infinite space, is separable as 

( ) ( ) ( ) ( )U X x Y y Z zr , with 2 2 2 2
x y zk k k k   . If 2 2 2

y zk k k  , then ( ) exp( )X x x  , where 

2 2 2
y zk k k    ; presuming any sources are on the “left”, in the region with 0x  , we take the 

positive square root. This is the classic evanescent wave, decaying exponentially for all 0x  ; note 
it never becomes a propagating wave for any positive x and the change from propagating to 
evanescent is totally abrupt as soon as 2 2 2

y zk k k  . 

We can write the separated equation for ( )X x (see supplementary text S1.1) as 

 
       

2

2

d
V E

d

 
    


    (2) 

where xk x  and ( ) ( )X x   , which is in the form of a one-dimensional Schrödinger equation 
(see, e.g., [26]), with a “potential” energy 2 2 2( ) ( ) /y zV k k k    (here actually independent of ), 
and an “eigenenergy” 1E  . This rewriting as in Eq. (2) allows us to state the clear behavior that, 
if ( )V E  , we have propagating solutions, and if ( )V E  , we have tunneling solutions. 
(Other recent work[27] has explored an abstract quantum tunneling approach with finite plane 
surfaces, though our spherical approach here is different.)    

The scalar Helmholtz equation (1) can also be solved in spherical polar coordinates, r,  and  
(see, e.g., [25]) (see supplementary text S1.2).  Specifically, one can look for separable solutions 

( ) ( ) ( , )U R r Y  r . The angular solutions ( , )Y    are the spherical harmonics ( , )nmY   , with 

0,1, 2,n    and, using the complex forms, n m n     (see, e.g.,[26]). The radial solutions 

( )R r  are the spherical Bessel functions ( )nz kr , also for 0,1, 2,n   . Using a dimensionless 

radial variable kr  , these radial functions satisfy the differential equation  
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      (3) 

Spherical Bessel functions of the first and second kinds, respectively ( )nj   and ( )ny  , give 

two independent solutions of Eq. (3). For a given n, linear combinations of these are also 
solutions. In particular, the spherical Hankel function of the first kind 

        1
n n nh j iy     (4) 

corresponds to outward propagating waves at large distances. (The notation ( )nz   stands in for 

any of ( )nj  , ( )ny  , or (1) ( )nh   in Eq. (3).) All these solutions have an underlying 1/ r  or 1/   

dependence at large r or , which corresponds to them falling off ultimately as spherically 
expanding waves. Indeed, specifically,  
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   (5) 

is a spherically expanding propagating wave as r  .  

We can multiply by radius to take out this underlying 1/ r  or 1/   dependence, giving radial 

solutions then expressed using what are known as Riccati-Bessel functions ( ) ( )n nS j    and 

( ) ( )n nC y    , and in particular, the “outgoing” Riccati-Bessel function  

          1
n n n nh S iC         (6) 

Such functions can be convenient for viewing the wave more as a function of angle rather than 
transverse position at any radius.  

There is, however, one other very important consequence of using a Riccati-Bessel functions like 
( )n  : they obey the Riccati-Bessel differential equation, which can be written 

 
       

2

2 2

1n
n n

d n n

d

 
   

 


    (7) 

(Note that substituting from Eq. (6) in Eq. (7) will recover Eq. (3)). This equation is now in 
exactly the Schrödinger form as in Eq. (2). The “eigenenergy” 1E   as before, but now the 
effective radial potential is  

    
2

1n n
V 




  (8) 

which falls off (as 21/  ) with radius  or r ( / k ). We can usefully now define the “escape 

radius” 

  1escn n n    or, equivalently, 
   

1
1

2
o

escn

n n
r n n

k





    (9) 

which marks the boundary between tunneling and propagating behavior for the wave, i.e., the 
point r or  at which ( ) ( 1)V kr E  . So, we have outgoing wave solutions 

            1 , ,n
nm n nm nm

kr
U h kr Y Y

kr


    r   0,1, 2...n  , n m n    (10) 

If an outward wave has an angular form ( , )nmY   , then for escnr r , this wave (in the Riccati-

Bessel form ( )n kr ) is tunneling outwards, but once it passes the escape radius escnr , it becomes 

propagating, escaping at least to some degree. This contrasts with (infinite) plane waves of the 

form ( ) exp( )U i r k r ; if such waves start out as evanescent (so with 2 2 2
y zk k k  ), they 

remain evanescent at all x, eventually vanishing completely. 
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The wave plotted in Fig. 1(b) is such a Riccati-Bessel function, showing the tunneling-like 
behavior up to the escape radius, and the propagating behavior for larger radii. (See fig. S5 in the 
supplementary text for the behavior as a function of time.) 

Though this transition between tunneling and propagating behavior at the escape radius is clear 
from the differential equation (7), it is not at all obvious from the usual algebraic expressions for 
spherical Bessel or Riccati-Bessel functions, which involve series of inverse powers of the radius 
together with sine and cosine functions (see, e.g., [25], p. 426); this may be why this tunneling 
behavior is not already better known. 

Incidentally, the scalar spherical waves found this way are also the waves associated with the 
communication modes[12], [13] between spherical surfaces (see supplementary text S3). 

Vector electromagnetic waves 
There are three different forms of vector wave solutions to the vector Helmholtz equation (see 
supplementary text S2), with one “longitudinal” and two “transverse” polarizations. The angular 
aspects are describable based on three vector spherical harmonic functions. Importantly, the 
tunneling in the radial behavior ( )R r  above for scalar waves persists into the vector cases.  

Though the longitudinal wave exists for sound and elastic waves, electromagnetic waves have 
just two, transverse forms. Each of those is separable into radial and angular parts, with the radial 
parts obeying the same equation as the function ( )R r  above, but with the angular part being a 

vector spherical harmonic function. Explicitly, for outgoing waves we have a set of “transverse 
electric” (TE) waves, with electric field (from Eq. (155) in the supplementary text) 

              1, , , ,TE n
nm n mn mn

kr
r i h kr i

kr

      
 

 E C C   1, 2...n  , n m n    (11) 

and “transverse magnetic” (TM) waves with magnetic field (from Eq. (159) in the supplementary 
text) 

              1, , , ,TM n
nm n mn mn

kr
r i h kr i

kr


      H C C   1, 2...n  , n m n    (12) 

Here, mnC  is the vector spherical harmonic function  

      , , ,mn nm nmY Y           C r r   1, 2...n  , n m n    (13) 

Note explicitly that radial behavior is given by functions (1) ( )nh kr  or ( )n kr , just as in the scalar 

case. The main differences are that 

(i) we have two waves for each choice of n and m, which we can view as being TE and 
TM polarized waves, respectively, 

(ii) their angular form, which is vectorial, is based on the gradient nmY  of the spherical 

harmonic rather than just the (scalar) spherical harmonic nmY  directly. Since 

( , )nmY    only depends on angles, not radius, nmY  only has vector components in 
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the ̂  and ̂  directions on the sphere surface, so it and the function ( , )mn  C  contain 

only transverse components – vectors that lie in the sphere surface,  
(iii) in contrast to the scalar solutions (10), there are electromagnetic waves for 0n  . 

The electric field ( )TM
nmE corresponding to ( )TM

nmH  and the magnetic field ( )TE
nmH  corresponding to 

( )TE
nmE  are given by Eqs. (158) and (154), respectively, in the supplementary text. The TE and TM 

waves for a given n and m describe perpendicularly polarized waves, with ( )TM
nmE  perpendicular 

to ( )TE
nmE  and similarly for the magnetic fields ( )TE

nmH  and ( )TM
nmH . The polarizations of both ( )TE

nmE  

and ( )TM
nmH  are always transverse (so perpendicular to the radius vector r), and the corresponding 

fields ( )TM
nmE  and ( )TE

nmH  are transverse in the far field, though they have radial components in the 
near field.  

This approach corresponds exactly to the multipole expansion of outward-propagating 
electromagnetic fields. We write fields in forms equivalent to Jackson’s definitions[25]; 
derivations of Eqs. (11) and (12) can be found there[25] (see supplementary text S2 for general 
vector wave derivations). Our tunneling analysis conceptually connects multipole and quasi-
evanescent behaviors in one formalism. These vector spherical waves are the waves associated 
with the (vector) communication modes between spherical surfaces or volumes[14].  

Note that our analysis also tells us that, to observe strong radiation from high n multipoles from 
some object, to avoid having to tunnel to escape, it would have to be essentially of the scale of 
twice the escape radius (so the diameter of the bounding sphere) for that n.   

Counting waves from spherical surfaces 
The escape radius allows a useful counting of waves associated with a spherical surface of radius 

or . There is a maximum value pn  of n for which all the associated spherical harmonic waves 

propagate without tunneling to escape, which requires o escnr r  for a given n. From Eq. (9), 

solving the quadratic equation 2( 1) ( )on n kr  , the largest n for which  1okr n n   is  

      floor 1 / 4 1/ 2p o SHn r N      (14) 

( floor ( )u  is the largest integer u .). Here SHN  is the “spherical heuristic number”  

      
22

2 2

4

/ /
o S

SH o
o o

r A
N kr


   

    (15) 

where 24S oA r  is the area of the spherical surface. (The concept of SHN  was introduced 
empirically in [12]; this algebraic definition of SHN also emerged in analytic work on spherical 

waves[14].) Note that, for 2okr  , or, equivalently, 2SHN   or 1o escr r , where  

  1 / 2 0.225esc o or      (16) 
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only the 0n   wave propagates without requiring tunneling escape. Since there are no 0n   
electromagnetic waves, all electromagnetic waves from (bounding) volumes smaller than this 
radius 1escr  must tunnel to escape (consistent with the well-known Chu antenna limit[28], which 

states that antenna Q-factor must increase for small antennas). Note again that there is no 
corresponding requirement for scalar waves, such as normal sound waves, which is consistent 
with small microphones and loudspeakers not having a corresponding limit and high Q-factor 
requirement. 

We can now calculate the total number psN  of (scalar) spherical harmonic waves with values of 

n up to (and including) pn . Since there are 2 1n  different m values (and hence spherical 

harmonics nmY ) for each n,   

      2

0
1 3 5 2 1 2 1 1

pn

ps p p
q

N n q n


          (17) 

For electromagnetic waves, with no 0n   waves, we remove that one wave, giving  

  1 2p ps p pN N n n     (18) 

which is the number of such electromagnetic waves per polarization.   

Since the Riccati-Bessel ( )n kr  functions take out the underlying 1/ r  decay of spherical waves, 

a simple metric for how effectively a spherical wave of index n propagates outwards from a 
radius or  is the relative far-field magnitude squared  

      2 2
/n o n n okr kr     (19) 

Incidentally, for a given n, this coupling n  is the same for every m value, which is surprising 

given the different associated shapes of nmY .  

In Fig. 2 (a) and (c), we plot ( )n okr  against n, and in Fig. 2 (b) and (d) parametrically against 
the cumulative number ( 2)n n  of electromagnetic waves per polarization (see Eq. (18)).(See 
also fig. S6 for curves like Fig. 2 (a) and (b) for different radii of spherical surfaces.) We see 
several interesting and useful behaviors in Fig. 2.  

1) For small volumes – e.g., a few wavelengths or smaller in radius – relatively quite a few 

waves can escape by tunneling with usefully large (e.g., >10-2) propagating amplitudes.  

2) The spherical heuristic number SHN is a good approximation to the total number pN  of 

waves (per polarization) that start out as propagating.    

3) As the radius of the spherical volume increases, a smaller fraction of the waves can 

usefully escape by tunneling, compared to those that start out as propagating. So, the 

transition to waves that must tunnel to increasing weak escape is increasingly relatively 

abrupt for larger volumes. So, in practice, with increasing size, we tend towards a simpler 

categorization of waves being either propagating or (approximately) evanescent.   
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Fig. 2. Far-field spherical wave strength with increasing order n. Relative far-field 

strength 
2 2

( ) ( ) / ( )n o n n okr kr     of the outgoing Riccati-Bessel function of order n 

for various values of the starting radius or  in wavelengths, plotted against n in (A) and 

(B), and, in (C) and (D), parametrically against the total number ( 2)n n  of spherical 

waves for the electromagnetic case, per polarization, up to and including waves of order 

n. (Solid lines are to guide the eye.) pn (vertical dotted lines on (A) and (B)) is the 

largest n for which all waves start out as propagating from the given radius or .  

( 2)p p pN n n   (vertical dashed lines on (C) and (D)) is the total number of such 

waves. 2( )SH oN kr  (vertical dash-dot lines on (C) and (D)) are the spherical heuristic 

number. (A) and (C) use linear scales, with 2.9or   wavelengths as in Fig. 1. (The 

0n   point, which does not exist for electromagnetic waves, is shown on (A) and (C).) 

For 2.9or   wavelengths, 17pn  ; 323pN  ; 332.01SHN  . (B) and (D) show results 

for or  of 0.2, 1, 5, and 25 wavelengths on log scales. The values of pn , pN , and SHN  

for 0.2or  , 1, 5, 25 are, respectively, 0pn  , 5, 30, 156; 1pN  , 35, 960, 24648; 

1.58SHN  , 39.48, 986.96, 24674.01. 
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The actual number of waves that propagate strictly without tunneling is a series of steps of 
integer height as a function of the radius of the spherical surface (Fig. 3). The number SHN  is a 
continuous smooth function that passes through those steps (Fig. 3). Hence, it can overall be a 
good simple estimate for this number pN .  

Note that SHN  in Eq. (15) is also the area 24S oA r  of the spherical surface divided by an area 
2 /o  . So SHN  corresponds to one such wave for every 2 /o   of area on the sphere, 

connecting this spherical wave behavior to heuristic diffraction limits in conventional optical 
systems with more planar surfaces, which limit focal spots to ~ a (square) half wavelength 

because of diffraction. Note, too, that at moderate to large n, we have 2 /p SH o on N r  , 

which is the circumference of the sphere in wavelengths.  

Fig. 3 also shows the number of waves that couple to the far field with coupling n , Eq. (19), 

greater than specific values of 0.1 and 0.01. (These would correspond to horizontal lines at 10-1 
and 10-2 on Fig. 2(d).) Some such waves will be tunneling to escape, but might still be practically 
useful, e.g., for communications or sensing. We see that there are quite significant numbers of 
such additional waves for small sphere radius, though relatively fewer for larger radii.  

 

Fig. 3. Number of waves (per polarization for electromagnetic waves) that start out by 
propagating, as a function of the sphere radius. This number is the stepped dashed line. 
The solid line is the spherical heuristic number SHN , showing it is a good 

approximation, even down to small radii. Also shown are corresponding values of pn , 

pN , and the escape radius escnr  (in wavelengths). (A) Linear scale. (B) Log scale, with 

also example 
2 2

( ) ( ) / ( )n o n n okr kr     values as the relative far-field magnitude 

squared of the spherical wave, with numbers of waves shown for ( )n okr  > 0.1 and > 
0.01 (dotted lines connecting points are just to guide the eye). Also indicated are several 
example pn  values (1, 3, 9, and 27) and their corresponding escape radii escnr , in 

wavelengths.  
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Though we consider only outgoing waves explicitly here, in practice these same numbers of 
waves also correspond essentially to the number of incoming waves that can penetrate into a 
spherical (bounding) volume (see supplementary text S4). Spherical waves beyond this limit will 
essentially reflect off an empty spherical volume of free space (becoming standing waves), so 
objects smaller than this volume are essentially invisible to, or “self-cloaked”[29] from, such 
waves.  

Waves from arbitrary volumes 
The sets of scalar and electromagnetic spherical waves we have constructed are complete for 
describing any (outgoing) wave on a spherical surface. Hence, they can also describe any wave 
emerging from sources in a volume enclosed by that bounding spherical surface (Fig. 4). Since 
we have established how many orthogonal basis-set waves can emerge from this spherical 
surface without tunneling, we have established an upper bound on the maximum number of 
orthogonal waves that could emerge from the source volume without tunneling. We could also 
extend this estimate to allow for waves that could tunnel from the spherical surface to escape to 
some specified degree.  

 

Fig. 4. A spherical bounding surface that just encloses some source volume or object. 
Any waves from the source volume that reach the spherical surface can be described in 
terms of spherical waves on that surface. 

Heuristic result for restricted solid angles 
Once the spherical surface becomes several wavelengths or larger in size, the number of waves 
(per polarization) that propagate without tunneling becomes quite large. At radii of ~ 3, 5, and 10 
wavelengths, for example, these numbers are ~ 350, 1000, and 4000, respectively. So, we can 
divide SHN  by 4  steradians to obtain, for a spherical surface of radius Sr , the (approximate) 
number of propagating waves per unit solid angle. 

 
2

2

S

o

r
N


   (20) 

Imagine, then, some receiving surface of area RA  at some (perpendicular) distance L from the 
center of the spherical surface (Fig. 5), so subtending a solid angle 2/RA L  . Then from Eq. 
(20) we could estimate a total number of propagating wave channels 



12 
 

 
2

2 2 2 2
S R T R

H
o o

r A A A
N

L L


 

   (21) 

where 2
T SA r , which we note is the apparent circular cross-sectional area of the source volume 

(see Fig. 5). We note that Eq. (21) is exactly the number previously deduced as the “paraxial 
heuristic number” of well-coupled channels between planar source and receiver spaces[12] (Eq. 
(64)). (See also[12], Appendix A, for the many heuristic derivations of number.) So, if we count 
only those waves that do not require tunneling to escape, we can derive previous heuristic results 
for the “diffraction-limited” number of channels in paraxial optical systems. (Note, too, that N , 
Eq. (20), is not itself restricted to paraxial cases.) These approaches could also be viewed as 
asking for the approximate number of these (spherical harmonic) basis functions required to 
adequately describe the resulting possible waves on the receiving surface from such a source 
volume.  

 

 

Fig. 5. Construction for waves to a finite receiving surface. A bounding spherical 
volume of radius Sr  surrounds a source of circular cross-sectional area 2

T SA r  
communicating to a receiving surface of area RA  at a distance L. 

Discussion and conclusions 
We have shown a unified way of thinking about waves in and out of volumes, from the 
propagating and evanescent fields of large optics to the multipole expansions of antennas and 
nanophotonics. This is based rigorously on the spherical waves associated with the spherical 
bounding surface round some volume or object. For all volumes from approximately a 
wavelength scale and upwards, a maximum number of well-coupled waves or orthogonal 
channels is understood as those that do not have to tunnel to escape the spherical surface. This 
onset of tunneling corresponds to a “knee” in coupling strength after which coupling falls rapidly 

because of the tunneling. A corresponding escape radius  ( 1) / 2escn or n n     characterizes 

the largest order n of spherical wave of wavelength o  that can propagate from such a spherical 
surface without initially tunneling. A spherical heuristic number SHN , corresponding to one 
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wave for every 2 /o   of area on the spherical surface, approximately but usefully characterizes 
the number of well-coupled waves (per polarization) and the position of the “knee” in coupling 
strength. With increasing radius of the volume, the relative fall-off from tunneling becomes 
progressively more abrupt, asymptoting towards the complete abruptness of the onset of truly 
evanescent behavior for infinite plane waves. Note, though, that such truly evanescent waves are 
an artifact of the assumption of infinite plane waves; all corresponding waves from finite bodies 
eventually escape to some degree by tunneling. (Note, incidentally, that similar radial tunneling, 
propagating, and escape behavior can be derived for circular and cylindrical waves; see 
supplementary text S5.) 

Finally, this approach allows us to propose a precise definition of the diffraction limit: For a 
wave interacting with a volume, the wave passes the diffraction limit if any spherical component 
of the wave must tunnel to enter or leave the bounding spherical surface enclosing the volume.  
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Supplementary text 
Waves in spherical coordinates are fundamentally well understood, though these details may be 
less commonly known. In this paper, we need to rely on some quite detailed aspects. We also 
need to deduce some basic and less common results with some rigor, especially as we consider 
spherical vector waves. We start with an extended discussion of scalar waves in spherical 
coordinates (Section S1). In Section S2, we give the derivation of the full behavior of vector 
wave solutions of the vector Helmholtz wave equation, including the special case of 
electromagnetic waves. This material can also be found in various forms in texts, with Refs.[25], 
[30]–[33] giving treatments that include the discussion of both scalar and vector cases. In Section 
S3, we show that the scalar wave solutions we have derived correspond to the communication 
modes[12], [13] between spherical shells. (Other work by us has shown the vector wave 
solutions similarly correspond to such communication modes in that case[14].) In section S4, we 
discuss how our approach applies to inward waves also. Section S5 shows that similar 
phenomena, with escape radius and radial tunneling, are found also in the radial behavior of 
cylindrical waves and the corresponding two-dimensional (planar) circular waves. 

S1 Scalar waves in spherical coordinates 
We are interested here in scalar and vector waves in a uniform, lossless, isotropic medium. 
Vector waves in spherical coordinates are more complicated, especially in their general forms. 
Fortunately, however, the scalar solutions also form the basis for discussing the vector case, so 
we start with a simple scalar wave equation of the form 

    2
2

2 2

,1
, 0

W t
W t

v t


  


r

r  (22)  

where r is the (vector) position in space relative to some origin, t is time, ( , )W tr  is the wave 
amplitude, and v is the wave velocity. For electromagnetic waves, we would have 21 / v   
where  and  are, respectively, the permittivity and permeability of the medium.  

We consider waves of one frequency, of . The wavelength for such a wave would be / ov f  .  
For algebraic convenience, we work with the angular frequency 2 of   and the wavevector 
magnitude 2 / /k c    , and we choose to write the corresponding time-dependence in the 
complex form exp( )i t , which leads to  

      , expW t i t U r r  (23) 

with the understanding that we can take the real part at the end if we want to describe normal 
classical waves. The choice of the minus sign in the exponent in exp( )i t  leads to the result 
that a wave of spatial form exp( ) /ikr r  will represent an outgoing spherical wave, for example.  

( )U r  now represents the amplitude in space of this oscillation at frequency of  (or, equivalently 
at angular frequency ). Substituting Eq. (23) in Eq. (22) gives the Helmholtz wave equation as 
in the main text (Eq. (1))  

    2 2 0U k U  r r  (24) 
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S1.1 Separation of the solutions - plane waves 
For reference, and for a simple introduction or reminder in separating solutions, we start by 
showing the separation of solutions in Cartesian (x, y, z) coordinates, which corresponds to plane 
wave solutions. With 

 
2 2 2

2
2 2 2x y z

  
   

  
 (25) 

we can formally propose a solution of the form 

        U X x Y y Z zr  (26) 

Then 

                        
2 2 2

2
2 2 2

X x Y y Z z
Y y Z z X x Z z X x Y y k X x Y y Z z

x y z

  
   

  
 (27) 

Dividing by      X x Y y Z z  and rearranging gives 

 
 

 
 

 
 

 2 2 2
2

2 2 2

1 1 1X x Y y Z z
k

X x x Y y y Z z z

  
   

  
 (28) 

As usual in such separation arguments, we note that nothing on the left of the equation depends 
on y or z, and nothing on the right depends on x. Therefore, both sides must equal some 
(“separation”) constant, which here, without loss of generality, we can choose to write as 2

xk . 
(We have not yet assigned any meaning to this way of writing the constant – it is just some 
number at this stage.) Hence, using the left side of Eq. (28) with this separation constant, and 
multiplying by ( )X x  on both sides, we have 

 
   

2
2

2 x
d X x

k X x
dx

   (29) 

where we note we can use ordinary rather than partial derivatives because we now only have one 
variable in the equation. Solutions of this equation can be written in the form 

    exp xX x ik x  (30) 

where xk  can take positive or negative values (and/or imaginary values), and arbitrary linear 
combinations of these are also solutions. Similarly, for y and z we have, with separation 
constants 2

yk  and 2
zk  

    exp yY y ik y  (31) 

    exp zZ z ik z   (32) 

Substituting using Eq. (29) and the corresponding similar equations for ( )Y y  and ( )Z z  back into 

Eq. (27) gives the necessary relation 
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 2 2 2 2
x y zk k k k    (33) 

We can also choose to write the overall separated solution as in Eq. (26) as  

          exp exp exp expx y zU ik x ik y ik z i  r k r  (34) 

with ˆ ˆ ˆx y zk k k  k x y z  ( x̂ , ŷ , and ẑ  being the unit vectors in the x, y, and z directions, 

respectively), which are the usual plane wave solutions. Note that, if 2 2 2
y zk k k  , then the 

solution in the x direction is ( ) exp( )X x x  , where 2 2 2
y zk k k    ; we take the positive 

square root (and hence a decaying exponential) on the presumption that any sources generating 

this wave are all on the “left”, that is for 0x  . We describe such a wave as decaying 

evanescently (or exponentially) in the x direction.  

 

Fig. S1. Spherical polar coordinates  , ,r    for a point in space, relative to 
conventional x, y, and z coordinate directions. Unit vectors r̂ , ̂ , and ̂  are also shown.  

Formally, then, we can rewrite Eq. (29) as 

 
     

2
2 2 2

2 y z

d X x
k k k X x

dx
       (35) 

So 

 
       

2
2 2 2

2 y z

d X x
k k X x k X x

dx
     (36) 

Writing kx  , 2 2 2( ) ( ) /y zV k k k    (which is independent of  in this case), and 1E  , we 

obtain the Schrödinger equation form of Eq. (2) in the main text. 

S1.2 Separation of the solutions - spherical waves 
Having understood separation of solutions in Cartesian coordinates, now we consider spherical 
polar coordinates r, , and , as illustrated in Fig. S1. In such coordinates 
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2

2 2
2 2 2 2 2

1 1 1
sin

sin sin

U U U
U r

r r r r r


    
                    

 (37) 

For separation in spherical coordinates, we propose a form 

        U R r    r  (38) 

We substitute this form, together with the expression (37) for 2U , into the wave equation (22), 
obtaining 

 

                 

     

2
2

2 2 2 2 2

2

sin
sin sin

0

R r R r R r
r

r r r r r

k R r

     


    

 

           
           

   

 (39) 

Dividing by ( ) ( ) ( ) ( )U R r    r , multiplying by 2sin   and moving the second term to the 
right of the equation gives 

 
 

 
 

 
 

 22
2 2 2 2 2

2

sin sin 1
sin sin

R r
r k r m

R r r r

    
    

        
               

 (40) 

Here we have also taken the additional step, as usual in separation of variables, that, since 
nothing on the left of the equation depends on , and nothing on the right of the equation 
depends on r or , both must equal some (separation) constant, which for future convenience we 
write as 2m . (Though m will later be shown to be integer in a specific range, for the moment we 
have not restricted its value in any way.) This therefore has given us our first separated equation 

 
   

2
2

2

d
m

d







    (41) 

which can now be written as a simple differential equation rather than a partial differential 
equation because there is only one variable, here . 

Now, taking the left hand side of Eq. (40), dividing by 2sin   and rearranging gives 

 
 

 
 

   
2

2 2 2
2

1 1
sin 1

sin sin

R r m
r k r n n

R r r r




    
     

              
 (42) 

where again, now because nothing on the left depends on  and nothing on the right depends on 
r, both must equal a constant, which for future convenience we choose to write as ( 1)n n  . 
(Again, later we will restrict n to being an integer in a specific range, but so far there is no 
restriction on it.) So, we now have a two additional separated equations 

 
     

2

2

1
sin 1 0

sin sin

dd m
n n

d d


 

   
          

  
 (43) 

which we will see has solutions based on associated Legendre functions, and 
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      2 2 2 1 0

dR rd
r k r n n R r

dr dr

 
    

 
 (44) 

whose solutions we will see are spherical Bessel functions. Eq. (44) is more commonly written 
by performing the first derivative in the expression, and changing to a function in the form 

      n nz z kr R r    (45) 

with kr  , to give the equivalent equation 

 
        

2
2 2

2
2 1 0

n n
n

d z dz
n n z

d d

 
   

 
      (46) 

Equations (41), (44), and (44) (or (46)) are now the separated equations for the “”, “ ”, and “r” 
variables, respectively. We can now proceed to find consistent solutions for all three equations at 
once. 

Solving the  equation 

By changing variables to cos   in Eq.(43), so changing to some function  

      cosm m
n nP P     

 and noting that cos / sind d    , Eq. (43) becomes 

          
2

2

2
1 1 0

1

m
n m

n

dPd m
n n P

d d


 

  

  
           

 (47) 

By performing the first differentiation, Eq. (47) is often written in the equivalent form 

            
2 2

2
2 2

1 2 1 0
1

m
nm m

n n

dPd m
P n n P

d d


   

  

 
      
  

 (48) 

Eq. (47) (or Eq. (48)) has meaningful solutions if we choose n as zero or a positive integer, and if 
| |m  is an integer less than or equal to n, i.e., 

 0,1, 2,n    (49) 

 , , 0,m n n     (50)  

The resulting solutions ( )m
nP   are the associated Legendre functions. (These are sometimes 

called the associated Legendre polynomials, but they are not (finite length) polynomials if m is 
odd.)  

One way of defining ( )m
nP   (see, e.g.,[25] p. 108) is through an extension of the Rodrigues 

formula 
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        /22 21
1 1

2 !

m n m
m nm

n n n m

d
P

n d
  







      
 (51) 

We can also consider these solutions with only 0 or positive m because, other than for a 
prefactor, these functions are the same for positive and negative m. Explicitly, 

      
   !

1
!

mm m
n n

n m
P P

n m
  

 


 (52) 

In this form, the orthogonality (and normalization) integral for these functions over a range  
1 1    (which is the only range of interest to us) is 

      
 

1

1

!2

2 1 !
m m

q n qn

n m
P P d

n n m
   






   (53) 

 

Fig. S2. Examples of normalized versions of associated Legendre functions for various 
values of n and m.  

We show some examples of these functions in Fig. S2. We have normalized these, following Eq. 

(53), by multiplying them by (2 1)( )!/ [2( )!]n n m n m   . Note that these functions cross the 

zero axis | |n m  times (the functions may or may not reach zero at the end points at 1    and 

1  , but they do not cross the zero axis there). 

Solving the  equation 

The fact that m has to be an integer means that we can write the solutions of the “ ” equation 
(41) in a complex form  
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    expm im   , , , 0,m n n     (54) 

or as two sets of real functions – odd “o” and even “e” 

    sinmo m   , 1, ,m n   (55) 

    cosme m   , 0, ,m n   (56) 

(The omission of 0m   for Eq. (55) is simply because in that case this function would be zero 
everywhere.) The choice of m as an integer also means that these functions in Eqs. (54), (55), 
and (56) are single-valued in . Whether one takes the “complex” or “real” function approach is 
a matter of taste and/or convenience for classical waves (though for quantum mechanical 
problems like the hydrogen atom, the complex form is required; see, e.g., [26]). Here, we use the 
“complex” approach, Eq. (54), for algebraic simplicity.  

Grouping the  and  solutions – spherical harmonics 

We can conveniently group the solutions to the “ ” and “ ” equations (48) and (41), 
respectively, into one function Y of   and  with parameters n and m – the “spherical harmonic” 
functions (as in the forms in[25], p.108) 

      
     2 1 !

, cos exp
4 !

m
nm n

n n m
Y P im

n m
   


 




 (57) 

which are normalized and orthogonal, i.e., 

    
2

0 0

, , sinqp nm qn pmY Y d d
 

 

        

 

   (58) 

and, incidentally,  

      , , 1 ,
m

n m nmY Y   
    (59) 

Spherical harmonics famously give the angular shapes of atomic orbitals in quantum mechanics 
and occur routinely in wave scattering from spherical objects and in many other classical 
problems, such as vibration modes of spherical shells. In hydrogen atom orbitals and in some 
other texts, the notation l is used instead of n.  

Though spherical harmonics may seem somewhat complicated functions, in fact they are 
relatively easy to visualize and describe. Spherical harmonics are simply functions of angle, so 
they can be conveniently plotted on the surface of a sphere, for example using color maps, as in 
Fig. S3. (The radius of the sphere has no particular meaning in such plots – the sphere is simply a 
convenient “canvas” on which to plot the spherical harmonic.)  

Of course, to make such plots, we can plot only real numbers. We can usefully plot the real part 
of the spherical harmonics of Eq. (57), which correspond to the “even” functions of  as given by 
Eq. (56). The “odd” functions (as in Eq. (55), which correspond to the imaginary part of the 
spherical harmonics of Eq. (57), have essentially the same shape, just rotated by an angle / 2m  



23 
 

around the polar axis. Note that, if we plot the spherical harmonics on a sphere of unit radius, the 

variable cos  used in the associated Legendre function (cos )m
nP   in the definition of the 

spherical harmonics as in Eq. (57) can be viewed as the distance along the polar (z) axis from 
center of the sphere. (The example associated Legendre functions in Fig. S2 correspond to the 
spherical harmonics in Fig. S3.)  

 

Fig. S3. Examples of spherical harmonics (technically the real part of the complex 
version of the functions), plotted as colormaps on a spherical surface. Spherical 
harmonics have n nodal circles (i.e., circles on this spherical surface on which the 
function is identically zero), with |m| such circles passing through both poles of the 
sphere. The remaining n - |m| nodal circles are parallel to the equator on the sphere, 
positioned symmetrically with respect to the equator in the “northern” and “southern” 
hemispheres. For each plotted spherical harmonic, the color bar scale, shown on the 
right of the figure, runs between the largest magnitude, max, of the function at any angle 
(or position on this sphere), and -max. With this color bar scale, the nodal circles appear 
as white lines. 

A simple way to describe the spherical harmonics (in their “real” forms as either sine or cosines 
in the angle  ) is in terms of “nodal circles” (see, e.g., [26]). These are circles on the sphere on 
which the function is identically zero. They are either circles through both (“North” and “South”) 
poles of the sphere (so, on lines of longitude on the sphere), or circles on or parallel to the 
equator (so, on lines of latitude on the sphere). The function always changes sign on passing 
through a nodal circle. The total number of such nodal circles is n. The number of (longitudinal) 
circles that pass through the poles is m (as a positive number, so |m| if one prefers), and there are 
n - |m| (“latitudinal”) nodal circles parallel to the equator.  

The circles through the poles are always evenly spaced in azimuthal angle . The latitudinal 
nodal circles parallel to the equator are always symmetrically spaced with respect to the equator. 
We could make a reasonable sketch of the spherical harmonics by using the equal spacing of the 
|m| longitudinal nodal circles in , and by placing the n - |m| latitudinal nodal circles 
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symmetrically with respect to the equator and reasonably evenly spaced in latitude. The precise 
positions in  of the latitudinal nodal circles are given by the zeros of the corresponding 
associated Legendre function  cosm

nP   (which, of course, also has n - |m| zero crossings as a 
function of  ). Such pictures also correspond to the forms of the amplitude of the vibrations in 
the vibration modes of an actual hollow spherical shell ([31], pp. 1469-72) (at least for those 
vibrations that are “radial”, corresponding to vibrations just “in and out” along a radius).  

Solving the radial equation – spherical Bessel functions 
The solutions to the radial equation (46) are the spherical Bessel functions of the first and second 
kinds, ( )nj   and ( )ny  , respectively.  

 

Fig. S4. Example spherical Bessel functions (top row) and Riccati-Bessel functions 

(middle and bottom rows). For the spherical Bessel functions, we plot ( )nj   (solid blue 

lines) and ( )ny   (dashed red lines) (we use the minus in ( )ny   for graphic 

consistency with the Riccati-Bessel functions). For the Riccati-Bessel functions, we plot 

( )nS   (solid blue lines) and ( )nC   (dashed red lines). All functions are plotted against 

the dimensionless “radius” variable . The vertical dotted grey line represents the 

characteristic distance we call the escape radius  1escn n n    
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These are related to (ordinary) Bessel functions of half-integer order. Explicitly 

    1

22
n

n
j J

 
 

  (60) 

    1

22
n

n
y Y

 
 

  (61) 

where J and Y are Bessel functions of the first and second kinds, respectively, and n is 
conventionally taken to be zero or a positive integer.  

Example spherical Bessel functions are graphed in the top row of Fig. S4. We have marked with 
a dotted grey line on each graph the characteristic radial distance that we call the “escape radius” 

  1escn n n    (62) 

in dimensionless form, or in dimensioned form  

  1 /escnr n n k   (63) 

From these formulas, we see immediately that 

  0

sin
j




  (64) 

  0

cos
y




   (65) 

Note that all the ny  functions diverge at 0  , and all the nj  functions  are zero at 0   
except when 0n  , for which 0(0) 1j  .  

It is also useful to look at the asymptotic behavior of ( )nj   and ( )ny   as   , i.e., for large 
radius. Specifically (see, e.g., [25] p. 427) 

   1
sin

2n

n
j

 


   
 

 (66) 

   1
cos

2n

n
y

 


    
 

 (67) 

The solutions ( )nj   and ( )ny   correspond to standing waves in space. It is also useful to have 
propagating wave solutions. Since the equation of which these are the solutions, i.e., Eq. (46) (or 
equivalently Eq. (44)) is linear, linear superpositions of these solutions are also solutions. In 
particular, we can construct the solutions 

        1
n n nh j iy     (68) 

        2
n n nh j iy     (69) 
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 1 ( )nh   and  2 ( )nh   are known as the spherical Hankel functions of the first and second kinds, 

respectively. One reason for introducing them is that they can correspond to propagating waves. 

In particular, we see by substituting the asymptotic forms of ( )nj  , Eq. (66), and ( )ny  , Eq. 

(67), at large radius  that 

        1 exp exp
n

i ikri
h i

k r





   (70) 

With our choice of  exp i t  as the oscillating temporal part of our waves as in Eq. (23),  1
nh  

therefore corresponds at large radii to an outward propagating spherical wave. Similarly  2
nh  

corresponds to an inward propagating spherical wave. It is a common notation to use ( )nz   (as 

in Eqs. (44) and (46)) to refer to any of these solutions ( )nj  , ( )ny  ,  1 ( )nh   or  2 ( )nh  . 

Riccati-Bessel functions and differential equation 
At this point in other treatments of spherical waves (e.g., Refs. [25], [30]–[33], we would 
proceed to put the separated solutions together using Eq. (38), and we will do this shortly. 
However, there is one additional step we take here, which is central to our larger argument: we 
introduce the Riccati-Bessel functions and their differential equation.  

We note first that, especially at large radial distances , the spherical Bessel functions have an 
underlying “1/  ” behavior. If we construct new functions where we take out that behavior by 
multiplying by , then we may get a clearer picture of the behavior of the functions. So, we can 
construct the functions 

    n nS j    (71) 

    n nC y     (72) 

          1
n n n nh S iC         (73) 

          2
n n n nh S iC         (74) 

which are known as Riccati-Bessel functions, in various forms. In particular, the ( )n   function 
corresponds to an outward propagating spherical wave at large radii. 

Note, incidentally, that 0( ) sinS    and 0( ) cosC   , which explains the standard S and C 
notation choice. We have plotted example nS  and nC  functions in the second and third rows of 
Fig. S4. Note that, once we pass the escape radius, the functions converge quickly to unit 
amplitude of oscillation, which is equivalent to saying that the spherical Bessel functions 
converge quickly to underlying “1/  ” behavior. 

We can also regard the Riccati-Bessel functions as representing the wave as seen in angle rather 
than (transverse) position. For a spherically expanding wave of constant power, the modulus 
squared of the amplitude per unit solid angle does not change, consistent with the convergence of 
the Riccati-Bessel function amplitudes to unit magnitude oscillations with increasing radius.  
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Other than clarifying the behavior of the radial functions, these functions have another, and 
central, role in our work here. These Riccati-Bessel functions satisfy the differential equation 

   
2

2 2
2

1 0nd
n n

d

  


     (75) 

where n  refers to any of the functions nS , nC , n , or n . That this equation is correct is easily 
verified by substituting for n  using any of the equations (71) – (74) and noting that  

  
2 2

2 2
2n n n

n n
d d dz d z dz

z z
d d d d d

  
    

 
    

 
 

Using this substitution in Eq. (75) and dividing by  recovers the spherical Bessel differential 
equation (46). The key point, though, is that we can rearrange the Riccati-Bessel equation (75) 
into the form 

 
 2

2 2

1n
n n

n nd

d

  
 


    (76) 

This is in the same form as a Schrödinger-like equation 

  
2

2

n
n n n

d
V E

d

   


    (77) 

where the “eigenenergy” is 1nE   for all n, and in which the effective “potential” energy is 
2( ) ( 1) /V n n   . So, for all radii  for which the “potential” energy exceeds the 

“eigenenergy”, we will have “tunneling” behavior – that is, for all  for which 

 
 

2

1
1

n n




  (78) 

or, equivalently,  

  1escn n n     (79) 

So, for escn  , the wave is tunneling rather than propagating. Once  exceeds the escape 
radius, the wave can start to propagate rather than tunnel. Fig. S5 illustrates the propagation of 
the resulting wave as function of time, for parameters as used for Fig. 1 of the main text, 
showing the outward propagation at larger radial distances.  
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Fig. S5. Illustration of the propagation of the Riccati-Bessel wave, plotted here as the real 
part of (2 )exp( 2 )n or if t   , where r is the radial distance from the center of the 
spherical wave, of  is the frequency (so a period 1 /o ot f ); 1.75 periods of oscillation 
are plotted. The wave has 22n   and starts from a spherical surface of radius 2.9 
wavelengths. The wave amplitude has been scaled to be 1 at the edge of the sphere. The 
escape radius is ~ 3.58  wavelengths (so 0.68  wavelengths outside the spherical 
surface). These parameters are the same as used for Fig. 1 of the main text. The wave 
beyond the escape radius can be seen to propagate outwards as a function of time.  

Expanding on the calculations in Figs. 1 and 2 of the main text, Fig. S6 shows the modulus 

squared of the relative far field magnitude of the spherically expanding wave 
2 2

( ) ( ) / ( )n o n n okr kr     (Eq. (19) of the main text) for various radii or  of the spherical 

surface, as a function of the order n of the spherical wave and, parametrically, of the total 

cumulative number of spherical waves up to and including order n (here 2( 1)n   for the scalar 

wave case). This shows how the tunneling “tail” of this coupling decreases as the radius of the 

spherical surface increases. 
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Fig. S6. Extended plots as in Fig. 2, here for the scalar wave case including 0n  . 

Relative far-field magnitude squared ( )n okr  of the spherical wave with increasing n 

for various values of the starting radius or  (in wavelengths) of the spherical surface. 

Lines are just to guide the eye. pn (vertical dotted lines), 2( 1)ps pN n   (vertical 

dashed lines), and the spherical heuristic number 2( )SH oN kr (vertical dash-dot lines) 

are shown for each case, similar to Fig. 2.  
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Fig. S7. Effective radial potentials and waves starting from a spherical surface of radius 
2.9or   wavelengths. Curves are plotted for n = 15, 17, 19, 21, and 23, as a function of 

radial distance from the edge of the sphere. (r is the distance from the center of the 
spherical surface.) (a) and (b) Relative magnitude squared of the wave as a function of 
radial distance from the spherical surface, on (a) linear and (b) log scales. (c) Effective 
radial potential 2( 1) / ( )n n kr . The dashed line corresponds to the division between 
tunneling and propagating behavior. (d) Relative magnitude squared of the wave at 
infinite distance as a function of n. (This is an expanded version of Fig. 2(b), with 
specific n values indicated.) (e) Real and imaginary parts of the wave 

( ) ( ) ( )n n ni kr C kr iS kr    for the different n values, normalized to unit magnitude at the 
sphere edge in each case. The escape radius escnr  (in wavelengths) is also shown 
(vertical dotted lines). For 15n   and 17 the escape radii of 2.47 and 2.78 wavelengths 
are less than or , so these radii are not shown on these plots (these waves are always 
propagating).  
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Fig. S7 shows detailed behavior of the Riccati-Bessel waves for different n for the example case 
of 2.9or   wavelengths, showing the progression with increasing n from waves that are initially 
propagating to ones requiring tunneling escape. The tunneling-like behavior up to the escape 
radius escnr  is quite clear by eye in, for example, Fig. S7(e) for the 21n   and 23n   curves.  

Curves similar to Fig. S7 but for other radii of the spherical surface are given in Figs. S8, S9, 
S10, S11 and S12, showing these behaviors and their consequences. When the radius or  and the 
corresponding n for the first few tunneling waves are small numbers, the tunneling barrier, as 
given by 2( ) ( 1) / ( )V kr n n kr  , Eq. (8), for the first several “escaping” waves tends to be high 
but thin. For large or  and corresponding n, the barrier tends to be relatively low but thick for 
those first “escaping” waves.  

 

Fig. S8. Effective radial potentials and waves as in Fig. S7 but starting from a spherical 
surface of radius 0.1or   wavelengths. Curves are plotted for n = 0, 1, 2, 3, and 4, as a 
function of radial distance from the edge of the sphere. 
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Fig. S9. Effective radial potentials and waves as in Fig. S7 but starting from a spherical 

surface of radius 1 / ( 2 ) 0.225o esc o or r       wavelengths (see Eq. (16)). Curves 
are plotted for n = 0, 1, 2, 3, and 4. 
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Fig. S10. Effective radial potentials and waves as in Fig. S7 but starting from a 
spherical surface of radius 1.0or   wavelengths. Curves are plotted for n = 3, 5, 7, 9, 
and 11. The escape radius escnr  (in wavelengths) is also shown (vertical dotted lines). 
For 3n   and 5n  , the escape radii of 0.551 and 0.872 wavelengths, respectively, are 
less than or , so they do not appear on this plot (these waves are always propagating). 
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Fig. S11. Effective radial potentials and waves as in Fig. S7 but starting from a 
spherical surface of radius 10or   wavelengths. Curves are plotted for n = 59, 62, 65, 
68, and 71. The escape radius escnr  (in wavelengths) is also shown (vertical dotted 
lines). For 59n   and 62n  , the escape radii of 9.47 and 9.95 wavelengths, 
respectively, are less than or , so they do not appear on this plot (these waves are always 
propagating). 
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Fig. S12. Effective radial potentials and waves as in Fig. S7 but starting from a 
spherical surface of radius 100or   wavelengths. Curves are plotted for n = 621, 627, 
633, 639, and 645. For 621n   and 627n  , the escape radii of 98.91 and 99.87 
wavelengths, respectively, are less than or , so they do not appear on this plot (these 
waves are always propagating). 
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Change of character of the solutions at the escape radius 
Note from Eq.(77) that, at this transition from tunneling to propagating (so V E ), the second 
derivative of the Riccati-Bessel functions is exactly zero. (Indeed, if one prefers, one can use this 
mathematical definition instead of the Schrödinger equation analogy to describe the escape 
radius and the wave behavior.) To be more specific, from Eq. (77), at this transition (i.e., at the 
escape radius escnr , or, equivalently, escn ) 

 
 

 2

2

1
0

escn

n

n

d

d
 

 
  



  (80) 

This value escn  is the only radius for which this is the case for both the real and imaginary parts 
of n , and this can be taken as an alternative and equivalent mathematical way of defining the 
escape radius. 

For smaller radii (so, V E ), this derivative (in the form 2 2(1/ )( / )n nd d   ) is always 
positive, so these functions are never oscillatory for radii below the escape radius. Indeed, for 
some function ( )f s  as a function of some position variable s, we could regard the criterion  

 
2

2

1
0

d f

f ds
  (81) 

as defining what we mean by “quasi-exponential” or “tunneling” and the complementary 
criterion 

 
2

2

1
0

d f

f ds
  (82) 

as what we mean by “quasi-oscillatory” or “propagating”. 

Once we pass the escape radius (so, E V ), 2 2(1/ )( / )n nd d    is always negative. Then, 
when the function n  is positive, the second derivative is negative, so the function eventually 
must turn “down”, which eventually pushes the function negative. When the function n  is 
negative, the second derivative is then positive, which means the function eventually must turn 
“up”, which pushes the function positive, and so on, giving some kind of oscillating behavior.  
This is consistent with the graphs in Fig. S4, and we may also be able to discern by eye the 
change in character in the Riccati-Bessel functions from “quasi-exponential” to “quasi-
oscillatory” as the radius passes this escape radius.   

Again, note that this transition from tunneling to propagating behavior, though clear from our 
discussion here of the differential equation (76), is not at all obvious from the explicit formulas 
for Riccati-Bessel functions in terms of sines, cosines and series of inverse powers of the radius 
(see, e.g., [25], p. 426). For example, the Riccati-Bessel functions for 1n   have explicit 
formulas  

  1
sin

cosS
 


  ,  1

cos
sinC

 



   (83) 
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It is straightforward to verify algebraically that the second derivative of both of these functions is 

zero when 2   (which is the corresponding escape radius in dimensionless units for the 

outward Riccati-Bessel function 1( )  ), but it is far from obvious from these functional forms 

that we have tunneling behavior for 2   and propagating behavior for 2  .

S1.3 Complete solutions for scalar spherical waves 
Now we can return to the original proposal for separable solutions in Eq. (38). With the spherical 

harmonics ( , )nmY    as a convenient way of writing the functions ( ) ( )   , and with 

( ) ( )n nz z kr   representing the spherical Bessel functions in any of the forms ( )nj  , ( )ny  , 
 1 ( )nh   or  2 ( )nh  , and similarly ( ) ( )n n kr    representing the Riccati-Bessel functions in 

any of the forms ( )nS  , ( )nC  , ( )n  , or ( )n  , the separable solutions of the scalar 

Helmholtz equation (24) in spherical polar coordinates are given by 

          1
, ,nm n nm n nmU z kr Y kr Y

kr
     r  (84) 

A key point about such a separated solution is that, for any such wave, it retains the same angular 
shape ( , )nmY    at all radii r or . Note, incidentally, that beams that retain the form of their 
shape as they propagate are unusual in solutions of wave equations, especially ones that make no 
“paraxial” approximations. (Hermite-Gaussian or Laguerre-Gaussian beams in free-space can 
retain the form of their shape, with a scale factor, as they propagate, but they are based on 
paraxial approximations.)  

We are particularly interested in the waves that are outward-going waves at large radii – 
essentially, we are imposing a “radiation condition” on our solutions. In that case, the possible 
separated solutions are 

            1 1
, ,nmout n nm n nmU h kr Y kr Y

kr
     r  (85) 

S1.4 Representing arbitrary outgoing scalar waves in spherical waves 
Now, spherical harmonics form a complete set for describing any function ( , )rof    of the angles 
 and  (see, e.g., Ref. [25], p. 108). Formally, we could decompose ( , )rof    onto the spherical 
harmonic basis, writing 

    
0

, ,
n

ro nm nm
n m n

f a Y   


 

   (86) 

where  

    
2

0 0

, , sinnm nm roa Y f d d
 

 

      

 

    (87) 

With these coefficients, we can now represent the entire outgoing wave ( , , )r   . Formally, 
that expansion takes the form 
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        1

0

, , ,
n

nm n nm
n m n

r b h kr Y    


 

   (88) 

for some expansion coefficients nmb . Since we presume we know the angular form ( , )rof    at 
radius or , then we have 

            1

0 0

, , , , ,
n n

o ro nm nm nm n o nm
n m n n m n

r f a Y b h kr Y        
 

   

       (89) 

from which we can conclude that 

    1
nm n o nmb h kr a  (90) 

or, equivalently, 

    1/nm nm n ob a h kr  (91) 

Hence, given the angular form ( , )rof    of an outgoing wave at any particular radius or , we can 
expand it in the set of functions ( )nmoutU r  as in Eq. (85), and describe this wave at all other 
positions in this empty space or uniform medium outside this spherical surface of radius or . 

Of course, it is not the case that such an arbitrary outgoing wave ( , , )r    generally remains 
the same angular shape as it propagates. The specific functions ( )nmoutU r  or, since the 
orientation of axes is arbitrary, any rotated version of them, do, however, have this property of 
retaining their shape as they propagate out. It is also the case that any linear combination of such 
functions with the same n but different m values will have this property because they all share 
the same radial function  1

1 ( )h r . 

S2 Vector waves in spherical coordinates 
Vector wave solutions in spherical coordinates have been studied extensively, starting at least 
with Mie[19] and Debye [20], especially to understand scattering properties of spherical particles 
and other objects, with significant current technological interest also[22], [34]. Textbook 
treatments are given, e.g., by Stratton [30], Morse and Feshbach[35], Bohren and Huffman[32], 
and Tsang et al.[33]. Our primary interest is in counting orthogonal waves rather than solving 
scattering problems. Since our results relate to different phenomena, especially tunneling escape 
of waves, we give a relatively complete discussion and derivation of the major results here.  

Based on an approach by Bouwcamp and Casimir[36], there is a relatively short derivation that 
applies only to vector electromagnetic fields – explicitly the electric and magnetic fields E and 
H. This approach is based on the scalar fields r E  and r H , which must[25], [36] also satisfy 
the scalar Helmholtz equation, Eq. (24); this is the approach used by Jackson[25] to derive the 
solutions (and specifically the multipole field expansion) for vector electromagnetic fields. Since 
we want also formally to prove that the “tunneling” analysis can apply to other vector fields as 
well, including acoustic and elastic waves, we give the more general derivation here.  

We start by defining some general mathematics for vector fields in spherical coordinates. 
Initially, we postpone discussion of the special case of electromagnetic fields. 
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S2.1 Vector spherical harmonics 
As a preliminary, we define the vector spherical harmonic functions, [35], p. 1898-99 and [33], 
p. 27). These are three sets of vector functions of the spherical polar coordinates ( , , )r    that can 
describe any vector function of the angles  and  on a spherical surface of radius r. They are 
based on the spherical harmonic functions ( , )nmY    and some of their vector derivatives. They 
can be defined[33] as 

    ˆ, ,mn nmY   P r   0,1, 2...n  , n m n    (92) 

    , ,mn nmr Y    B   1, 2...n  , n m n    (93) 

    , ,mn nmY       C r   1, 2...n  , n m n    (94) 

where r̂  is a unit vector in the radial direction for the point of interest on the spherical surface.  

These different functions are all orthogonal to one another in the angles  and , both for 
different n and/or m and, for different ones of the mnP , mnB ,  and mnC , even for the same n and 
m. Taken together, they form complete sets for describing any vector field as a function of angles 
 and  on a spherical surface of radius r. Note that mnP  describes functions that are radially 
polarized (or “longitudinal”), i.e., vectors that point exactly inwards or outwards, perpendicular 
to the spherical surface.  

In component form, we can perform the vector derivatives for mnB  and mnC . First,  

        ˆ ˆ, cos cos exp
sin

m m
mn n n

d im
P P im

d
      

 
    

B  (95) 

For mnC , we note that, because of the vector calculus identity  

  f f f    a a a   (96) 

and the fact ([37], pp. 149-150) that  

 0 r  (97) 

we can rewrite Eq. (94) as 

      ˆ, , ( , )mn nm mnY         C r r B  (98) 

and so we obtain 

        ˆ ˆ, cos cos exp
sin

m m
mn n n

im d
P P im

d
      

 
    

C  (99) 

Incidentally, note also the relation 

    ˆ, ,mn mn    B r C  (100) 

which is readily proved from these component forms. 
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Eqs. (100) and (98) imply that both mnB  and mnC  represent fields that are tangential to the 
spherical surface, so they are both expressible entirely in terms of components in the ̂  and ̂  
directions, i.e., they represent “transverse” fields on the spherical surface. (Note: mnB  should not 
be confused with the B magnetic field; here it represents just a specific mathematical vector 
function related to spherical harmonics.)  

Note above that, while in Eq. (92) we have listed mnP  as being defined for the integer n starting 
from 0, for mnB  and mnC , n starts from 1. This turns out to be quite important for the behavior of 
vector waves, especially electromagnetic ones. We can see the reason for this if we remember 
that the spherical harmonic for 0n  , 00Y , is the same for all angles  and . Since spherical 
harmonics do not depend on radius r, being only functions of angle, then all derivatives of 00Y  
are zero, so 00Y  is the zero vector. From the definition Eq. (93) that means 00B  would also be 
the zero vector. Similarly, from the definition Eq. (98), it follows that 00C  would also be zero. 

Note also that these various vector spherical harmonics represent orthogonal polarization 
directions. Obviously, mnP  represents only radial polarized fields (i.e., in the r̂  direction), and 
neither mnB  nor mnC  has any radial components, so they are fields that are always tangential to a 
spherical surface. Also, we can verify directly from the component forms Eqs. (95) and (99) that  

 0mn mn B C  (101) 

so  mnB  and mnC  represent orthogonal polarizations on the spherical surface. 

S2.2 General vector fields in spherical coordinates 
Consider any vector field F in three-dimensional space that it is sufficiently differentiable and 
falls off at least as fast as 1/ r  as r  , where r is the radius of some large bounding sphere. 
Then any such field F can be decomposed into two parts 

  F L T  (102) 

where  

 LL  (103) 

is the “longitudinal” field, where L  is a scalar function of space (which we call a scalar 
potential), and 

 TT A  (104) 

is the “transverse” field and TA  is a vector function of space, which we call a vector potential. 
(Note we are not yet identifying L  or TA  with any scalar or vector potentials in 
electromagnetism; this is a general statement for such fields. Note too that L should not be 
confused with other uses of this notation for angular momentum.) This decomposition (102) is 
known as Helmholtz’s theorem or the Helmholtz decomposition (see, e.g., [35], p. 1763 and[37], 
p. 178). 
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Though L and T are referred to as “longitudinal” and “transverse”, L is not necessarily a purely 
radially polarized field in spherical coordinates, nor is T necessarily polarized transverse to the 
radius vector in spherical coordinates, though they can be purely longitudinal and transverse 
respectively at large distances (i.e., in the “far field”) from the center of some source. 
Nonetheless, these “longitudinal” and “transverse” notations are common and convenient.   

Now let us presume that our field F of interest is to satisfy the vector Helmholtz equation 

  2 2 2 0k k      F F F F F  (105) 

where we use the vector calculus identity 

  2   f f f  (106) 

for any appropriately differentiable vector function f. (We will formally prove below that 
electromagnetic waves satisfy the vector Helmholtz equation, though for the moment we just 
presume we have some vector field that satisfies this equation.)  

We consider first the longitudinal field LL . (We do this mostly for completeness; this 

component will not appear for electromagnetic fields at finite frequencies, as we will show 
below, though it may exist for elastic waves, for example as longitudinal sound waves in solid 
media.). Noting that, for any scalar function f , 0f   as a vector calculus identity, then Eq. 

(105) becomes 

   2 0k   L L  (107) 

So, noting that 2f f     by definition, then substituting from Eq. (103) in Eq. (107) 

  2 2 0L Lk      (108) 

So L is a solution of the vector Helmholtz equation if L  is a solution of the scalar Helmholtz 

equation 

 2 2 0L Lk     (109) 

(so longitudinal sound waves, modeled using an underlying scalar Helmholtz equation, can 
correspond to solutions of the vector Helmholtz equation, for example). 

Now we consider the “transverse” components of the fields. Quite generally, since ( ) 0  f

for any appropriately differentiable vector function f, then from Eq. (104) we have 0 T . 
Hence, for such “transverse” fields, the vector Helmholtz equation, Eq. (105), becomes 

 2k T T  (110) 

Following Stratton[30], pp. 414-5 (see also [35], pp. 1764-6), we can propose a solution for Eq. 
(110) in the form 

  MM r  (111) 
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where r is the position vector of the point of interest, which we can regard as a radial vector in 
spherical polar coordinates. (So, we are choosing a “vector potential” function F MA r as in 
Eq. (104); note we are not identifying this as the magnetic vector potential of electromagnetism – 
this is just a mathematical construct.) 

Using the identities Eqs. (96) and (97), we can rewrite Eq. (111) as 

 M  M r  (112) 

which means M  is perpendicular to r, so there is no component of M in the r̂  direction. Hence, 
performing the curl in (111) in spherical polar coordinates gives  

 
   1 1ˆ ˆ

sin
M Mr r

r r

 
 

  
 

 
 

M  (113) 

If we then construct M  by elementary vector calculus operations in spherical polar 
coordinates, we find that this M as in Eqs. (111) or (112) satisfies the vector Helmholtz equation 
in the form of Eq. (110) (see[30], p. 415 and[35], pp. 1764-6), i.e.,  

 2k M M  (114) 

 if M  satisfies the scalar Helmholtz equation in the form Eq. (109), i.e., 

 2 2 0M Mk     (115) 

So, now we have found one possible kind of solution M as in Eqs.(111) or (112)  for the 
“transverse” solution of the vector Helmholtz equation (105) or (110), a solution that is based on 
an underlying scalar function M  satisfying the scalar Helmholtz equation. 

Now we can propose another solution for the “transverse” field, which we can write as 

 
1

k
 N M  (116) 

(The 1/ k  factor is introduced for convenience to give N and M the same physical dimensions.) 
Then 

 
1

k
k

   N M M  (117) 

where we have used Eq. (114). Hence  

 2k k   N M N  (118) 

So we have shown that this N as defined in Eq. (116) is also a solution of the vector Helmholtz 
equation for “transverse” fields.  

So, finally, we have three solutions to the vector Helmholtz equation (105); a “longitudinal” 
solution L, Eq. (103), and two “transverse” solutions M, Eq. (111), and N, Eq. (116). Note that 
all of these are based on scalar functions that satisfy a scalar Helmholtz equation. When we solve 
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those scalar equations in spherical coordinates, we get the same radial behaviors as we found for 
scalar waves.  

S2.3 Explicit forms and sets of solutions for vector waves in spherical 
coordinates 
Presuming for the moment that all these (vector) solutions L, M, and N can exist (the L solution 
will not exist for electromagnetic fields at finite frequencies, as we show later), we can now use 
known solutions of the scalar Helmholtz equation to construct sets of these vector solutions. In 
particular, in spherical polar coordinates in uniform isotropic media, we can propose for the 
scalar solutions F  or M  any of the functions (Eq. (84) above) 

          1
, ,nm n nm n nmU z kr Y kr Y

kr
     r   

We remember that ( )nz kr  are any of the spherical Bessel functions (or linear combinations of 
them) for a given order n, n  are similarly any of the Riccati-Bessel functions, and nmY  are the 
spherical harmonics. 

We can form the L solutions (if they exist) using one of the ( )nmU r  functions for L  in Eq. 
(103). For consistent physical dimensions, we introduce a constant factor 1/ k , giving 
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  (119) 

In terms of the vector spherical harmonics defined above, we can write this as 

    
       , , , ,n n

mn mn mn

dz kr z kr
r

d kr kr
      L P B   0,1, 2...n  , n m n    (120)  

where the vector spherical harmonics mnP  and mnB  are given by Eqs. (92) and (93), respectively 
(and we note that 00B  is the zero vector). Explicitly, in component form, we have, using Eqs. 
(92) and (95) 
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 (121) 

Similarly, we construct 
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where we have used the vector calculus identity Eq. (96). Now using the fact that ˆ 0 r r  
because these vectors are parallel, the first term on the right on the last line of Eq. (122) 
vanishes, leaving 

      , , ,mn n mnr z kr   M C   1, 2...n  , n m n     (123) 

where mnC  is given by Eq.(94). Explicitly in component form, using Eq. (99) 

          ˆ ˆ, , cos cos exp
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m m
mn n n n

im d
r z kr P P im

d
      

 
    

M  (124) 

We can construct the set mnN  starting from the mnM  functions using the component form of Eq. 
(124). (We need the component form because we need to use a result that lies outside of vector 
calculus and its identities.) For our vector function ˆ ˆ

mn mn mnM M   M  above with no 
component in the r̂  direction, explicitly for ˆ ˆˆmn mnr mn mnN N N    N r , 
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For the ̂  and ̂  parts, we have 
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The r̂  component becomes 
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Changing variables from   to cos  , and noting that  
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and 2 2 2sin 1 cos 1      , we have  
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Now we recognize that we can substitute for the term in braces {} using the defining differential 
equation for the associated Legendre functions, Eq. (47), obtaining for the r̂  part of mnN  

            1 1
ˆ ˆ1 cos exp 1m

nmr n n n mnN n n z kr P im n n z kr
kr kr

    r r P  (130) 

so finally we have, in terms of the vector spherical harmonics,   

      
 

1 1
1 n

mn n mn mn

d kr z kr
n n z kr

kr kr d kr

    N P B   1, 2...n  , n m n    (131) 

00N  is omitted (so n starts from 1) because 00B  is the zero vector as discussed in its definition 
above and, though 00P  is not in general the zero vector, it is premultiplied by the factor n in Eq. 
(131), so there is no contribution for 0n  .  

To emphasize an important point from these results, while mnL  is defined (Eq. (120)) for all 
0,1, 2,...n  , both mnM  and mnN  are defined (Eqs. (123) and (131)) starting from 1n  , i.e., for 
1, 2,...n  .  

(In our constructions above of mnL , mnM , and mnN , we have avoided normalizing factors for 
simplicity since we do not need them, but normalized versions are given in [33], p. 27.) 

S2.4 Near and far field vector waves in spherical coordinates 
We can conveniently divide the various terms in mnL , mnM , and mnN  into what we can call 
“near-field” and “far-field” terms. Here by “near-field” we mean terms that certainly fall off 
faster than 1/ r  at larger radii r, so they cannot correspond to waves that propagate in the far 
field. By “far-field”, conversely, we mean terms that fall off with an underlying 1/ r  
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dependence, so they can correspond to propagating spherical waves of constant power for large 
r. 

We note that the various spherical Bessel functions ( )nz   (i.e., explicitly, ( )nj  , ( )ny  , 
 1 ( )nh   or  2 ( )nh  ) all have an underlying 1/ r  fall-off in their magnitude at large r (as well as a 

quasi-oscillatory behavior with r at large enough r). So, for example, a term in ( ) /nz kr kr  is 
falling off as 2~ 1/ r ; so, it is a “near-field” term in our categorization. A term with the simple 
derivative ( ) /ndz kr dkr , however, because of the quasi-oscillatory part, has a large component 
that falls off as ~1/ r , so we categorize it as a “far-field” term here. (Note explicitly that 

1( ) / ( / ) ( ) ( )n n ndz d n z z      , in which the component in 1( )nz   falls off as ~ 1 /  ). A 
function ( )nkr z kr  is essentially independent of r (in its overall magnitude) at large r. (In fact, it 
corresponds also to a Riccati-Bessel function, which we have explicitly seen above tends to a 
constant magnitude of quasi-oscillation at large r.) A term with the derivative ( ( )) /nd krz kr dkr  
is therefore (in magnitude of quasi-oscillation) also essentially independent of r at large r; so a 
term in (1/ ) ( ( )) /nkr d krz kr dkr is falling of as ~ 1/ r  at large r, so it is a “far-field” term.  

With these categorizations of near- and far-field terms indicated by superscripts, we can write for 

mnL  

 ( ) ( )near far
mn mn mn L L L  (132) 

from Eq. (120) with  

      ,near n
mn mn

z kr

kr
 L B  (133) 

and for mnN  

    near far
mn mn mn N N N  (134) 

from Eq. (131) with  

      1
1near

mn n mnn n z kr
kr

 N P  (135). 

mnM  does not have any corresponding near-field terms, so we can collect and state all the far-
field terms as 

    
   ,far n

mn mn

dz kr
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 L P   0,1, 2...n  , n m n    (136) 

      , , ,mn n mnr z kr   M C   1, 2...n  , n m n    (137) 
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  N B   1, 2...n  , n m n    (138) 
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(Eq. (137) is the same as Eq. (123) above.) The allowed ranges for n (including in particular 
whether 0n   is allowed) follow from the corresponding ranges for mnL , mnM , and mnN  in Eqs. 
(92), (93), and (94).  

We see also that these far-field terms have simple polarization behavior. mnL  is radially 
polarized, and mnM  and ( )far

mnN  have transverse polarizations that are also orthogonal to one 
another. Remember Eq. (101), 0mn mn B C , so 

   0far
mn mn M N  (139) 

(It is also quite generally true that mnM  (as in Eq. (123)) and mnN (as in Eq. (131)) have 
orthogonal polarizations because nmP , being radially polarized, is orthogonal to the polarizations 
of both mnB  and mnC .)  

S2.5 Electromagnetic waves in spherical coordinates 
So far, we have considered vector fields quite generally that satisfy a vector Helmholtz equation 
in spherical coordinates, leading to sets of solutions mnL , mnM , and mnN  that are based on 
vector spherical harmonics mnP , mnB ,  and mnC  and spherical Bessel functions (or, equivalently, 
Riccati-Bessel functions). Sound waves in air and some kinds of elastic waves in solids can 
satisfy such an equation (or a slightly extended version with different transverse and longitudinal 
wave velocities, as appropriate for a homogeneous isotropic solid material, for example[35]). 
Indeed, sounds waves and such elastic materials are known to support the kinds of longitudinally 
polarized waves (e.g., velocity waves for sound) that can be described using the mnL  functions. 
Though we will not consider such sound or elastic waves further, we could use exactly the 
techniques in this work to analyze the numbers of such propagating waves and their tunneling 
escape. 

The vector waves of most interest to us will be electromagnetic waves. As we demonstrate 
below, those satisfy the vector Helmholtz equation, though only the mnM  and mnN  sets of 
functions are required to describe them in spherical coordinates. The mnL  waves are not present, 
as we will show. 

We start with Maxwell’s equations for the electric and magnetic fields E and B, respectively, for 
the case of a uniform isotropic material, so with constant permittivity  and permeability, and 
with no net charge density or current density. 

 0 E  (140) 

 0 B  (141) 

 
t


  


B

E  (142) 

 
t

  

E

B  (143) 

So 
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Similarly 
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As usual, we can identify  

 21/ v   (146) 

where v is the wave velocity. Since we are only interested in monochromatic fields at some 
(angular) frequency , so with a presumed time dependence exp( )i t  , Eqs. (144) and (145) 
become, respectively 

 2k E E  (147) 

 2k B B  (148) 

where the wavevector magnitude k is given by 

 k
v

     

Noting the vector calculus identity 2 ( )   f f f , Eq. (106), and noting that both 
E  and 0 B  (Eqs. (140) and (141)), we can if we wish rewrite these as the full vector 
Helmholtz equations 

 2 2 0k  E E  (149) 

 2 2 0k  B B  (150) 

Though, in fact, Eqs. (148) and (147) are all we need. 

Suppose now we consider the E field in the full Helmholtz decomposition as in Eq. (102), which 
would lead to a representation 

 E E  E A  (151) 

for some formal electric scalar and vector potentials E  and EA . (Note, incidentally, that the E  
defined this way would correspond to minus the electrostatic potential  as conventionally 
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defined in electrostatics, where for static fields  E .) However, from the Maxwell equation 
(140) in the absence of net charge density, 0 E , and since generally ( ) 0  f , we have  

 2 0E    E  (152) 

(where we note 2f f   ). But if the “longitudinal” component E L  is to be a solution 
of the vector Helmholtz equation, we require that E  satisfies the scalar Helmholtz equation 
(109), i.e., 2 2 0E Ek    . Since 2 0E   (Eq. (152), we can only have a finite E L  for 

0k  , which corresponds to a static electric field (which satisfies Laplace’s equation for no 
charge density, 2 0E  ). So, for finite frequencies, there is no longitudinal field component L 
for the electric field.  

Since also 0 B , Eq. (141), we have an identical argument to discard the longitudinal field 
component L for the magnetic field. Hence, for both electric and magnetic fields at a finite 
frequency, we need only the mnM  and mnN  functions to describe them (each of which satisfies 
the equations (147) and (148)).  

Hence, in summary conclusion, electric and magnetic fields in uniform isotropic media with no 
charge density or current density, at some frequency  with corresponding wavevector 
magnitude k, can be represented in spherical coordinates using the two sets of functions 

( , , )mn r  M , Eq. (123), and ( , , )mn r  N , Eq. (131), and in simpler form in the far field by 
( , , )mn r  M  (as before) and ( ) ( , )far

mn r  N , Eq. (138). In all cases, 1,2...n  , n m n   . Note 
again that there are no 0n   solutions for these electromagnetic waves.  

So, what we have shown for electromagnetic waves in uniform isotropic media is that 

(i) There is no L spherical wave. 
(ii) For each of the electric field E and the magnetic field B, there are both M and N 

spherical waves. 
(iii) There are no 0n   spherical waves. 

All that remains now is to write out these results for the M and N waves for the electric and 
magnetic fields in some conventional form.  

S2.6 Relation to multipole expansions 
The electromagnetic results we have derived above correspond conventionally to the multipole 
representation of electromagnetic waves. Jackson[25], pp. 430-1, defines two sets of fields, in 
terms of electric field E and magnetic field / H B  . Historically, these multipole fields are 
sometimes known as magnetic and electric multipoles, though that notation can be confusing. 
Instead, we use the alternate notation of “transverse electric” (TE) and “transverse magnetic” 
(TM) multipoles, which relates more naturally to propagating wave behavior. In our notations for 
n, m, and with ( )nz kr  as any linear combination of spherical Bessel functions of order n, we can 
write these results as follows. 

(i) The transverse electric (TE) (or “magnetic”) multipole of order (n, m), is given by  
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         , , ,TE
nm n nmr i z kr Y

   


  E r  (153) 

      1
, ,TE TE

nm nmr i
k

 


  H E  (154) 

Using Eqs. (98) and (123), Eq. (153) becomes 

          , , , , ,TE
nm n mn mnr i z kr i r

      
 

 E C M  (155) 

Using Eq. (116), Eq. (154) becomes 

      , , , ,TE
nm mnr r   H N  (156) 

(ii) The transverse magnetic (TM) (or “electric”) multipole of order (n, m) is given by  

         , , ,TM
nm n nmr i z r Y     H r  (157) 

      1
, ,TM TM

nm nmr i
k

 


 E H  (158) 

Using Eqs. (98) and (123), Eq. (157) becomes 

          , , , , ,TM
nm n mn mnr i z kr i r      H C M  (159) 

and using Eq. (116), Eq. (158) becomes 

      , , , ,TM
nm nmr r

   


 E N  (160) 

Hence, the mnM  and mnN  functions are basis functions for these expansions. So, our 
representation of electromagnetic fields in terms of ( , , )mn r  M  and ( , , )mn r  N  is the same as 
the multipole expansion of electromagnetic fields. Note still, as mentioned explicitly also by 
Jackson[25], p. 431, these functions are defined only for n starting at 1, not zero. 

For completeness, we can mention that, to obtain normalized versions of these multipole 
radiation functions for convenient expansions, Jackson [25], p. 431,  introduces a set of functions 

  
 

   
 

 , , ,
1 1

nm nm mn

i i
Y

n n n n
     

  
 

X r C  (161) 

in terms of which 

        , , 1 ,mn n nmr i n n z kr     M X  (162) 

      1
1 ,mn mn n nm

i
n n z kr

k k
 

    N M X  (163) 

These sets of functions nmX  are also explicitly orthogonal for different n and/or different m.  
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Note, incidentally, that these definitions from Jackson[25] are not formally dimensionally 
correct. They get the relative dimensions of electric and magnetic fields correct, but they 
formally correspond to a dimensionless H field. To be dimensionally correct, all these fields 
would need to be multiplied by a constant with dimensions of amperes/meter (those being the 
units of the H field). (One possible reason for Jackson’s choice is that there is no obvious 
combination of the fundamental constants o  and o  and the velocity of light in 
electromagnetism itself that has the dimensions of either the E field or the H field.)  

Incidentally, for a spherical shell volume enclosing some sources, the radius of that sphere is 
essentially telling us when we can stop including terms in a multipole expansion. Once the 
escape radius associated with a given n becomes sufficiently much larger than the sphere radius, 
we may stop including further terms in the expansion.  

S3 Communication modes for scalar spherical waves 
The primary interest in this paper is how waves behave as we propagate out from a spherical 
surface. We have shown the various scalar (and vector) waves in spherical coordinates that could 
be considered as a basis for any such outgoing waves. There is an underlying way of thinking 
about waves that clarifies that these are a complete basis for any outgoing waves, and that 
explicitly links to the orthogonal channels for communication in such systems. This is the 
communication mode approach[12], which establishes the orthogonal source functions in a 
source space that communicate to resulting orthogonal waves in a receiving space.  

This approach is based on the singular-value decomposition of the coupling operator SRG  (or 
equivalently, the Green’s function ( , )SR R SG r r ) between the source and receiver spaces. It 
rigorously and uniquely (within geometric degeneracies) gives these pairs of basis functions in 
the source and receiver spaces. The corresponding waves in the space between the source and 
receiver spaces can be calculated from these, but it is important to understand that the 
eigenfunctions and orthogonalities here are for the functions in the source space and the 
receiving space.  

If we consider, for example, a spherical or spherical shell source space, of (outer) radius Sor  and 
a (concentric) spherical shell receiving space with some larger (inner) radius Ror  (so there is 
space between these two spherical surfaces) as in Fig. S13, we can rigorously and analytically 
calculate these orthogonal source and received wave functions in those spaces. We take 
thicknesses Sor  and Ror , respectively, for these source and receiver shells that we presume to 
be very small, both compared to a wavelength and compared to the radii of the shells.  

As we construct these volumes and the associated communication modes, importantly, we will 
see that the resulting waves we can calculate for the space between these spherical surfaces 
correspond exactly to the spherical waves we have established above. So, these spherical waves 
correspond to the waves associated with the communication modes of such a spherical system. 
This guarantees that these waves are complete for describing any such outgoing wave because 
we know from the communication mode analysis that the waves in the spherical shell receiving 
volume form a complete set for describing such outgoing waves. 
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Fig. S13. Illustration of thin, concentric spherical shell source and receiving volumes. 

Note that, as is generally the case for communication modes, the waves in the space between the 
source and receiving volumes are not the eigensolutions of the problem – they are not the 
“modes”. In fact, in the present problem, though each one of the waves in that space can be 
described as the solution of a differential equation that is in eigen equation form, Eqs. (7) (in the 
main text), (76) or (77), the equation is different for different n; explicitly, the potential energy is 
different for every n. These waves for different n are not solutions of the same differential 
equation; they are not different eigensolutions of the same equation.  

In contrast, the communication modes are sets of functions, one for the source space and one for 
the receiving space, that are each sets solutions of the same eigenequation (with a different, 
though related, eigenequation for each of the two spaces, source and receiving). These sets of 
functions in each space, because they are the eigenfunctions of compact Hermitian operators in 
each case, do form orthogonal and complete sets of functions for describing any source in the 
source space and any corresponding resulting waves in the receiving space. To repeat, the waves 
we have calculated above turn out to be the waves associated with the communication modes 
between source and receiver spaces with concentric spherical surfaces, and this proves the 
completeness of these waves for describing any outgoing (scalar) wave from a spherical surface. 

Now let us formally solve for the communication modes for this spherical shell problem. Quite 
generally, we can write the coupling operator in the singular-value decomposition (SVD) 
form[12] 

 SR j Rj Sj
j
   G  (164) 

Here the Dirac “ket” notation Rj  is a function representing a wave in the receiving space, and 

is one of the complete set of functions (indexed by j) in that space that results from solving the 

eigen equation 
2†

jSR R j RjSR   G G  where the “ † ” indicates the Hermitian adjoint 
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(conjugate transpose) of the operator (or matrix). Similarly, Sj  is one of the complete set of 

eigenfunctions of the equation 
2†

j jSR S j SSR   G G . (The “bra” Sj  is the Hermitian 

adjoint of Sj ; if we think of these as mathematical vectors, the “ket” is a column vector, and 

its “bra” version is a row vector with complex conjugated elements.) Note †
SR SRG G  and †

SRSRG G  

are both Hermitian operators and have provably non-negative eigenvalues[12]. 

Conventionally, we choose these eigenfunctions to be normalized; together with their known 

orthogonality (which follows from them being eigenfunctions of Hermitian operators), we can 

write the “orthonormality” relations Rp Rq pq    and Sp Sq pq   , where pq  is the 

Kronecker delta, with 0, ; 1,pq pqp q p q     . Because of this orthonormality, we can see 

from Eq. (164) that 

 SR Sj j Sj  G  (165) 

That is, each one of the orthogonal source functions Sj  leads to the generation of the 

corresponding one Rj  of the orthogonal received wave functions, with an (amplitude) coupling 

strength given by j , which is known as the singular value, and which can be a complex 

number, corresponding to the specific phase relationship between the source and received 

functions.  

Hence the SVD gives a set of orthogonal source functions that couple one by one to a set of 
orthogonal resulting waves, and this can be viewed as the physical meaning of the SVD in this 
case. Note that this decomposition Eq. (164) is unique (other than for symmetry degeneracies as 
usual with eigen problems). So, if we find a set of orthogonal functions in the two spaces that 
represent the operator in this way, we have found the SVD of the operator. 

Now, the free-space Green’s function of the Helmholtz equation (1) can be written (Jackson[25], 
Eq. 9.98 on p. 428, also Hanson and Yakovlev[38], Eq. 5.172, Varshalovich et al.[39], p. 165, 
Eq. (19)) 

              1

0

exp
, , ,

4

n

n nm n nm
n m n

ik
G ik j kr Y h kr Y   






 


      



r r
r r

r r
 (166) 

where we can regard r  with spherical coordinates ( , , )r      as being the position of the source 
and r with coordinates ( , , )r    as being the position at which we examine the resulting wave. 
Note immediately that, because the spherical harmonic functions are complete and orthogonal 
for describing functions of angle in spherical coordinates, this expansion is already close to the 
form of Eq. (164). If our source space is a thin spherical shell, the functions ( ) ( , )n nmj kr Y      are 
already an orthogonal set in this space because the spherical harmonics for different n and/or m 
are orthogonal; we do not even need any orthogonality properties from the spherical Bessel 
functions nj . Similarly, for a receiving space that is a thin spherical shell, the functions 
 1 ( ) ( , )n nmh kr Y    are also orthogonal for different n and/or m.  
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To complete the expression as in Eq. (164), we need to express the Green’s function in terms of 
orthogonal functions that are also normalized. Formally, then, in the source space, we want to 
choose the constant SnA  such that 

     22 2 2, sin 1
S

Sn n nm
V

k A j kr Y r dr d d              (167) 

where SV  is the volume of the source spherical shell as in Fig. S13. (Note that nj  is real, so we 

do not need to take its modulus squared in this integral. Note also that we will split the “k” 

prefactor between the two functions when normalizing, assigning a factor k  to both functions.)  

The integral over the angles is already given by the orthonormality relation for the spherical 
harmonics, Eq. (58) (with the resulting value of 1). Because the spherical shell is presumed very 
thin, we can remove the 2( )nj kr  term to outside the integral as 2( )n Soj kr , leaving 

    2 22 2 22 1
So

So S

r

Sn n So Sn n So SSo
r r

A j kr k r dr A j kr r k r


      (168) 

So, we can choose a normalization factor 

  1/Sn n So SSoA j kr r k r     (169) 

The source basis functions become, explicitly, 
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, ,Snm n So nm nm

n So S SSo So

j kr Y Y
j kr r k r r k r

        
 

 (170) 

where we have replaced ( )nj kr  by ( )n Soj kr  given our thin spherical shell volume. Similarly, we 

can choose the normalized receiving function as  

  1
,Rnm nm

RRo

Y
r k r

  


 (171) 

  1
,Rnm nm

RRo

Y
r k r

  


 (172) 

Using these normalized forms, we can rewrite Eq. (166) in the form 

  
0

,
n

SR nm Rnm Snm
n m n

G   


 
    r r G  (173) 

where  

      1
nm So Ro S R n So n Roikr r r r j kr h kr     (174) 

If we are interested in propagation to the far field, so for very large Ror , we can use the far-field 
approximation to the spherical Hankel function, Eq. (70), and write 

   22 2
nm S R n SoSor r r j kr       (175) 
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Fig. S14. Plot of 2[ ( )]o n okr j kr , a dimensionless version of the modulus squared of the 
singular values, for the communication modes between sources in a thin spherical shell 
of radius or  wavelength and another thin spherical shell of very large radius, against the 
parameter n of the spherical waves. (Lines are to guide the eye; only the points are 
meaningful.) These plots are for a representative set of values of or  – specifically, 0.1, 
0.225, 1, 2.9, and 5 wavelengths. The corresponding values for pn , the largest value of 
n for which all waves start out as propagating, are also shown. 

We have plotted a related dimensionless version of these squared singular values, 2[ ( )]o n okr j kr , 
in Fig. S14 for various values or  of Sor . For pn n , in each case these squared singular values 
fall off rapidly and monotonically with increasing n, which corresponds to waves that start out by 
tunneling. For smaller values of n, there is a somewhat oscillatory behavior in the singular value 
magnitudes, which can be rationalized as the result of interference between sources at different 
points on the thin spherical surface. The vector electromagnetic waves follow a similar 
communication mode analysis that we have presented in[14]. 

For our present discussion, the specific results for the singular values and/or its square are less 
important than the fact that we have shown that we have the singular value decomposition of the 
operator connecting our thin spherical shell source and receiver volumes, and we see that the 
wave functions consistent with the communication modes as a function of distance outside the 
source spherical shell are exactly of the form  1 ( ) ( , )n nmh kr Y   . 

S4 Inward waves 
As is common in many wave and antenna problems, we have examined the wave propagation 
with a “radiation condition”, that is, we have examined only outward propagating waves so far. 
This is the solution when there are sources within our spherical volume, and none outside. We 
can also consider situations where there is instead an incoming wave.  
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One common approach is to view this as a scattering problem, and many such investigations 
exist, especially with incident plane waves, such as Mie scattering (see, e.g.,[22] for a recent 
discussion), which does, incidentally use the same kind of spherical wave basis as we use here. 
Generally, an incident wave can give rise to some absorption in an object, which can be viewed 
as a source in the object that is excited by the incoming wave in such a way that it absorbs some 
of the incoming radiation, and may also radiate some new radiation of its own.  

We will not investigate such scattering problems here. We can, however, briefly consider the 
solutions with our spherical waves in the situation where there is an incident wave on our 
spherical volume, but there are no sources inside the spherical volume. Then there can be no ny  
spherical Bessel function because the associated wave would become singular at 0r  . (For this 
reason, we also discard the corresponding nC  Riccati-Bessel function in the solutions.) In such a 
case, the only corresponding radial solutions are the nj spherical Bessel functions, with the 
corresponding nS  Riccati-Bessel function. These solutions are standing waves, not propagating 
waves; all waves that go “in” must come back “out” again.   

For an 0n   scalar wave, the solution simply corresponds to us focusing towards the center of 
the spherical volume, which would could view as a wave essentially passing through that focus, 
though note that there is no such 0n   electromagnetic wave, as discussed above. However, as 
we consider waves with higher n, we start now to see the tunneling behavior emerging, this time 
as a tunneling penetration into the volume from the outside. See, for example, the nj  spherical 
Bessel functions and the nS  Riccati-Bessel functions in Fig. S4, which are the solid (blue) lines 
in each case. Once n becomes larger than about 5, we can very clearly see the tunneling decay 
into the spherical surface below the escape radius.  

In fact, such high-n waves effectively never get far into the interior of the spherical surface, 
being essentially reflected off it, which we can view as forming the standing wave. See Fig. S15, 
which shows, in this example for 17n  , that the waves essentially do not penetrate into an inner 
spherical volume of about 2 wavelengths in radius. Note, then, that such waves cannot 
effectively “see” far inside the sphere. They are, in a sense, reflecting off empty space. 
Generally, the spherical volume of radius significantly less than the escape radius for a given n is 
effectively “cloaked”[29] as far as those waves are concerned. Fig. S16 shows similar examples 
up to 100n  . 

Note that such standing waves with total reflection from a spherically shaped region are part of 
the normal propagation of waves through free space. Indeed, to us, it would appear that the 
inward spherical wave is just propagating through free space to become the outward wave, as if 
it were focusing through the center of the sphere. But, in fact, for all waves of any substantial n 
value, they are instead reflecting back on us, never getting to the center. 
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Fig. S15. Plot of a spherical standing wave, shown in the equatorial plane in the 2D 
color map plot (upper part of figure). This is plotted for 17n  , 6m  , for radii up to 
6.05 wavelengths. For 17n  , the escape radius is 2.78  wavelengths, shown also as 
the dashed circle. The corresponding radial spherical Bessel function 17 ( )j kr  (which is 
equivalent to 17 (2 )j r  for r in units of wavelengths) is shown in the lower graph.    

Fig. S16 shows for different n that the waves “starting” from the outside indeed initially become 
stronger as the radial distance decreases, as we would expect for spherical waves focusing 
toward the middle. For all n larger than about 3, however, once they pass the escape radius, they 
rapidly get weak. They are failing to penetrate far inside the escape radius; they are instead 
effectively reflecting off this region of empty space.  

Suppose we have some object located around the center of these plots in Figs. S15 and S16. For 
small n, we would have to deal with possible absorption and/or scattering for incoming waves 
because the wave clearly reaches into the center of the plots. (In such a case, we would have to 
solve the scattering problem properly.) With increasing n in our incoming waves, once the sphere 
of the corresponding escape radius escnr  becomes even moderately larger than the object, these 
waves of higher n will effectively not see the object because they would not reach it. So, in 
microscopy, for example, if we were to try to illuminate the object with such high n waves to 
expose some fine detail, if the object is much smaller than the corresponding escape radius, such 
probing waves would effectively not even reach the object. So, we see that, even in the case 
where we have some object that could scatter and/or absorb radiation, the number of external 
waves that we need to consider in interacting with that object is essentially the same as the 
number pN  of waves that could escape from the bounding sphere round the object.  
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Fig. S16. Plots of spherical standing waves as in Fig. S15, for various values of n, 
together with the corresponding spherical Bessel functions nj  and escape radii escnr  in 
wavelengths. m is chosen as the largest possible value ( m n ) for plots for n up to 9 
(top two rows), and 10m   is chosen for larger n values (bottom row). The “empty” 
region in the middle is clear for all n greater than ~3. 
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We must allow that it could be possible that the object was very resonant, so then even some 
weak field penetrating to the object could still excite significant effective sources in the object, 
and that could somewhat increase the number of waves we had to consider in the scattering or 
absorption of that object. Even then, the fall-off of the penetration of higher n waves into the 
spherical bounding volume is quite rapid with n, so pN  (or its good approximation SHN ) is still 
a good first guide to the number of waves that can couple strongly in or out of the object.  

In conclusion, when we consider incoming spherical waves, we find that those also experience 
the “escape radius”, which now becomes the start of a tunneling barrier that may prevent them 
from penetrating much further into the spherical volume. Such waves can effectively be largely 
or essentially entirely reflected by this spherical volume in free space, leading to standing waves 
that could appear to us to have simply “focused” through the volume. With increasing n, these 
waves cannot sense objects of size much smaller than the spherical surface of radius given by the 
escape radius escnr . So, indeed, there are also only so many waves that can effectively get into a 
volume, e.g., for active sensing, and this counting is essentially the same as for the number that 
are well coupled out of the volume.  

S5 Circular and cylindrical waves 
Though spherical waves give the most general results on bounding volumes and counting of 
waves from them, cylindrical and (planar) circular waves also occur in many contexts. 
Importantly, in such coordinates we also see similar wave tunneling and escape behavior in the 
radial parts of these coordinate systems, and for completeness we derive that here. We can 
proceed in a similar fashion in polar or cylindrical coordinates to that taken in spherical 
coordinates. 

S5.1 Scalar circular and cylindrical waves 
We start with scalar waves with the same scalar Helmholtz equation (Eq. (24). We introduce 

cylindrical coordinates xyr ,  and z. Considering the usual Cartesian coordinates x, y, and z as a 

reference coordinate system, z is now also the coordinate along the axis of cylindrical 

coordinates, xyr is the radial coordinate in any plane parallel to the x-y plane, and  is the angular 

(azimuthal) coordinate in any x-y plane. (We have used  rather than  for this angle for 

commonality with the spherical coordinate system.) For circular (or polar) coordinates, 

corresponding to waves in planar or two-dimensional structures or systems, there is no variation 

in z and that axis and coordinate can be dropped. 

In such coordinates, the scalar Helmholtz equation becomes 

 
2 2

2 2 2
2 2 2

1 1
0xy

xy xy xy xy

U k U r U k U
r dr r r z

    
          

  (176) 

For completeness in our notation, we formally give the algebraic derivation of the separation of 
this equation. We propose a separable solution of the form 
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        xy xyU R r Z z r  (177) 

Dividing by ( ) ( ) ( )xy xyR r Z z   and rearranging gives 

 
       

2 2
2 2 2

2 2 2

1 1 1 1
xy xy xy z

xy xy xy xy xy xy

Z
r R r k k k
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 (178) 

where we have introduced the separation constant 2 2
zk k . The resulting equation for Z has 

solutions of the form 

    exp zZ z ik z  (179) 

Multiplying Eq. (178) by 2
xyr  and rearranging gives  
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 (180) 

where we have introduced the separation constant 2n . The resulting equation for  becomes 

    
2

2
2

n 



   


 (181) 

which has solutions of the form 

    exp in    for 2, 1,0,1,2n      (182) 

i.e., for n being a positive or negative integer or zero. This requirement on n is so we obtain a 
single-valued function for . Finally, dividing Eq. (180) by 2

xyr  and rearranging gives  

    
2

2
2

1
0xy xy xy xy xy xy

xy xy xy xy

n
r R r k R r

r dr r r

    
        

 (183) 

where we have defined 

 2 2
xy zk k k   (184) 

(taking the positive square root for definiteness). Changing to the variable  

 xy xy xyk r   (185) 

 with ( ) ( )n xy xy xyC R r  , Eq. (183) becomes 

    
2
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1
1 0xy n xy n xy

xy xy xy xy
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C C

d
  

   
    

        
 (186) 

which is one way of writing the standard differential equation for Bessel functions. Specific 

solutions include the Bessel functions of the first and second kinds, ( )n xyJ   and ( )n xyY  , 

respectively, and the linear combinations  1 ( ) ( ) ( )n xy n xy n xyH J iY     and 
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 2 ( ) ( ) ( )n xy n xy n xyH J iY    , which are the (cylindrical) Hankel functions of the first and 

second kinds, respectively, conventionally corresponding to outward and inward circular waves, 

respectively. Collectively, these four different solutions are sometimes known as the cylinder 

functions, hence the notation nC  to represent any of them.  

Now, we can define a new set of functions 

    n nK s s C s  (187) 

The relation of these functions to the circular (or Bessel or Hankel) functions is conceptually 

similar to the relation of the Riccati-Bessel functions to spherical Bessel or Hankel functions. 

(We are not aware of any corresponding name for these functions ( )nK s , however.) In the 

present case, we are multiplying by the square root of a radial distance s to take out an 

underlying 1/ s  behavior of the Bessel or Hankel functions at large radius, a behavior that 

corresponds to Bessel or Hankel functions representing circularly expanding waves at large 

radius. If we substitute ( ) /n xy xyK    for ( )n xyC   in Eq. (186), we obtain 
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Just like for the spherical case with Riccati-Bessel functions, this is in the form of a Schrödinger 
equation with a “potential energy” 

    2

2

1/ 4
xy xy

xy

n
V 




  (189) 

and an “eigen energy” of 1nE  , similar to Eq. (77) for the spherical wave case. (Note also that 
this potential is proportional to 1/(radius)2, just as in the spherical case.) The corresponding 
escape radius xyen  in dimensionless form is given by the condition 2 2 1

4xyen n   , i.e., 

 2 1
4xyen n    (190) 

In dimensioned form, using Eqs. (184) and (185), we have the escape radius 

 
2 1
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2 2
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 (191) 

For the case of circular waves, such as those on a membrane, there is no variation in z. Then the 
2 2/ z   term in Eq. (176) and any ( )Z z  function can be omitted, and the zk  can be dropped 

from Eq. (191), giving a simpler circular escape radius 

  2 1
4 /cenr n k   (192) 

Hence, these ( )n xyK   cylindrical or circular waves have a similar set of tunneling, escape and 

propagating wave behaviors to the Riccati-Bessel spherical waves, with a corresponding escape 
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radius. Note in cylindrical or circular cases that for 0n  , the waves all start out by propagating 

– there is then no finite escape radius.  

Note that the escape radius in the cylindrical case depends on any zk  value. Larger zk  values 
will lead to larger escape radii. The smallest possible escape radius for any real zk  is therefore 
given by the circular escape radius cenr  of Eq. (192). 

S5.2 Vector circular and cylindrical waves 
The general analysis of vector fields in section S2.2 above is independent of the coordinate 
system, so we can if we wish follow through with analysis in L, M, and N waves in cylindrical 
coordinates also (see, for example, Stratton [30], pp. 395-399). Formally, for whatever cylinder 
function nC we choose as appropriate for our problem (i.e., Bessel or Hankel functions), with ẑ  
as a unit vector in the z direction and writing 

      exp expn n xy xy zC k r in ik z   (193) 

we can write (e.g., as in [33], p. 23) 

  , ,n xy z nk k  L r   (194) 

    ˆ ˆ, ,n xy z n nk k      M r z z  (195) 

 

      1 1
ˆ, , , ,n xy z n n xy zk k k k

k k
   N r z M r  (196) 

For electromagnetic waves there will still be no L waves as before. For each of the electric and 
magnetic fields, we will have solutions of the forms given by these nM  and nN  functions. In 
component form, with ˆxyr  as the radial unit vector in the direction of interest in the x-y plane, 
from Eq. (195) 
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and from Eq. (196)  
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 (198) 

If we take a similar approach to defining corresponding E and H fields as for the spherical case 
above, then we can formally choose  

  TM
n nH M  (199) 
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which is polarized entirely in the x-y plane. (Formally, similarly to the spherical case, we would 

need to multiply by some constant with dimensions of amperes to give this the correct 

dimensions for this magnetic field.) In the far field, this will tend to being polarized in the ̂  

direction, transverse to the radial direction (the component of nM in the ˆxyr direction will fall off 

as 3/2~ 1/ xyr  at large xyr and hence will become negligible, leaving just a ̂  component). The 

corresponding electric field for this H field is 

  TM
n ni




E N  (200) 

Now if we choose 

  TE
n ni




E M  (201) 

which also is polarized entirely in the x-y plane and will tend to being polarized in the ̂  
direction in the far field, the corresponding H field is 

  TE
n nH N  (202) 

In these fields, again the radial behavior of the amplitude is governed by the ( )n xyC   function, 

or, equivalently, the ( ) ( )n xy xy n xyK C    function that removes the underlying 1/ xy  

behavior of the circular functions at large radius, and which shows the same tunneling behavior 

as for the scalar circular or cylindrical case.  

The actual behavior of these functions for finite zk  is somewhat complicated. However, the 
situation for 0zk  , which corresponds to the circular case also, becomes much simpler. In this 
case, the expression for nM  becomes  
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ˆˆ exp
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xy xy
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M r  (203) 

and for nN  we have 

    , 0 ˆ ˆexp
zn k n n xyk k C in    N z z  (204) 

which is a field polarized along the z direction, and shows simple Bessel or Hankel function 

behavior with radius. The corresponding ( ) ( )n xy xy n xyK C    function will then directly 

show the tunneling and escape behavior. 

S5.3 Summary and comparison with the spherical case 
We can summarize the following similarities and differences for the circular/cylindrical case 
compared to the spherical case. 
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1) In both cases, we can define functions for the radial behavior that satisfy Schrödinger-like 

equations, with a clearly defined escape radius. For the circular/cylindrical cases these 

functions are of the form ( ) ( )n xy xy n xyK C    (Eq. (187)), where xy  is the 

appropriate dimensionless radial variable (Eqs. (184) and (185)). Multiplying by the 

factor xy  “takes out” the underlying 1/ radius  behavior of a cylindrically or 

circularly expanding wave. Equivalently, the ( )n xyK   can be regarded as waves 

normalized per unit (circular) angle rather than per unit (transverse) length.  

2) The expression for the escape radius for a circular/cylindrical wave of order n, 
2 1

4xyen n    (Eq. (190), is similar to that for the spherical case in its behavior with n. 

For circular waves, the dimensioned escape radius  2 1
4 /cenr n k   (Eq. (192)) is 

scaled using the overall wavevector magnitude k, similarly to the spherical case. For 

moderate or larger n, if we consider an effective wavelength of 2 / xyk  in the cylindrical 

case, we can interpret this as saying that, if the number of (effective) wavelengths round 

the circumference of the circle of interest exceeds ~n, that wave must tunnel radially to 

escape.  

3) For cylindrical waves with finite (real) wavevector zk  along the z direction, the radial 

wavevector component xyk  has to reduce according to 2 2
xy zk k k   (Eq. (184)) so that 

2 2 2
xy zk k k  . As a result, the dimensioned escape radius for a given n increases as zk  

increases, according to    2 2 21
4 /xyen zr n k k    (Eq. (191)). Hence,  

(i)  2 1
4 /cenr n k   is the smallest escape radius for a given n, and  

(ii) radial escape becomes more difficult as zk  increases. 

4) Unlike the spherical case, waves with 0n   are allowed for both scalar and 
electromagnetic waves for both circular and cylindrical waves. As for the spherical case, 

0n   waves start out by propagating radially, with no escape radius. 

So, in conclusion, circular and cylindrical waves show a similar kind of propagating and 
tunneling behavior in the radial direction to that for the spherical case, also with a clearly defined 
escape radius for a given order n of wave. 

 

 


