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Physical design refers to mathematical optimization of a desired objective (e.g. strong light–matter
interactions, or complete quantum state transfer) subject to the governing dynamical equations, such
as Maxwell’s or Schrodinger’s differential equations. Computing an optimal design is challenging:
generically, these problems are highly nonconvex and finding global optima is NP hard. Here
we show that for linear-differential-equation dynamics (as in linear electromagnetism, elasticity,
quantum mechanics, etc.), the physical-design optimization problem can be transformed to a sparse-
matrix, quadratically constrained quadratic program (QCQP). Sparse QCQPs can be tackled with
convex optimization techniques (such as semidefinite programming) that have thrived for identifying
global bounds and high-performance designs in other areas of science and engineering, but seemed
inapplicable to the design problems of wave physics. We apply our formulation to prototypical
photonic design problems, showing the possibility to compute fundamental limits for large-area
metasurfaces, as well as the identification of designs approaching global optimality. Looking forward,
our approach highlights the promise of developing bespoke algorithms tailored to specific physical
design problems.

Precise fabrication techniques and high-quality mate-
rials are enabling unprecedented control over photonic
and quantum physical systems, opening exciting fron-
tiers for applications from metasurface optics [1, 2] to
quantum computing [3, 4]. Yet this flexibility is ac-
companied by a proportionate complexity: the design
spaces are enormous, and classical and quantum wave-
interference effects make them highly oscillatory and non-
convex. The corresponding design problem, of discov-
ering optimal patterns in space and/or time, is gener-
ically NP hard [5]. In this article, we identify a sur-
prising mathematical structure in design problems aris-
ing from the typical differential equations of physics: in
many cases, they can be transformed to sparse, quadrat-
ically constrained quadratic programs (sparse QCQPs).
It is well known that sparse QCQPs can be close to con-
vex optimization problems, in a sense we make precise
below, implying that the transformed design problems
may have significantly smoother landscapes and that
global optima may be easier to approach. The seem-
ingly impenetrable nonconvexity of conventional formu-
lations of physical design has limited scientists and en-
gineers to black-box algorithms or gradient-based local
optimization. Our transformations enable direct con-
nection to a wide swath of modern optimization theory,
where advances in convex optimization and semidefinite
programming have enabled remarkable progress in tra-
jectory optimization (e.g., rocket landings) [6, 7], ma-
trix completion (recommendation systems) [8–10], com-
pressed sensing (network routing) [11, 12], and more. We
show that for prototypical problems in domains such as
photonic design and quantum control, one can leverage
the sparse-QCQP structure to find fundamental limits
for large-scale devices, and offer the possibility of identi-
fying designs near global optimality. We develop a gen-
eral theory for connecting these ideas in nanophotonics,
quantum control, and beyond, and offer a new, convex-
optimization-based direction for physical design.

In the 1990’s it was recognized that a key dividing

line between “easy” and “hard” optimization problems
was not linearity versus nonlinearity, but rather convex-
ity versus nonconvexity [13]. Convex optimization prob-
lems, with convex objective functions and convex con-
straint sets, share a remarkable property: all local op-
tima are global optima [14]. Convex optimization prob-
lems can be solved efficiently (in polynomial time) for
global optima, e.g., by now-standard interior-point meth-
ods [14]. Original applications of convex optimization
primarily arose in operations research, but over the past
two decades, a surprising number of optimization prob-
lems have been shown to be transformable to convex,
or nearly convex, formulations. In addition to the three
applications mentioned above, further examples include
ptychography [15, 16], in which wide-field-of-view, high-
resolution images are formed from low-resolution sam-
ples, and phase retrieval [17, 18], in which one infers
phase values from intensity measurements. By contrast,
quantum and classical wave dynamics create interference
patterns and oscillatory objective landscapes that are
clearly nonconvex.

Confronted by the nonconvexity of physical design,
two approaches are typically taken. One is to com-
pute gradients of the objective function with respect to
the designable degrees of freedom and “ascend” or “de-
scend” using the gradient. A particular breakthrough in
the efficiency of such algorithms came from the “adjoint
variable” technique [19–21] (or “backpropagation” [22]),
which forms the basis of approaches known as “inverse
design” [23–25] and “topology optimization” [26–28] in
photonics, and “GRAPE” and “Krotov” in quantum
control [29–33]. Such inverse-design techniques have
been used across linear, nonlinear [34, 35], and even
chaotic [36] physical systems. However, as gradient-based
techniques, they may get stuck in low-quality local ex-
trema, and they offer no insight into global bounds (or,
“fundamental limits”).

Alternatively, one can use techniques intended for
global optimization; early interest in evolutionary algo-
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rithms has largely been supplanted by modern research
in neural networks. Yet neural networks typically excel
in scenarios where modeling is difficult and an extraordi-
nary amount of data is availabile (such as image recog-
nition and large language models). In physical design,
data is expensive to generate (full differential-equation
simulations), we have exact models (the differential equa-
tions themselves), and learning across architectures, ma-
terial platforms, and frequency ranges has proven diffi-
cult. There have been a number of pioneering efforts
in applying machine learning to physical design [37–40],
but it is highly unclear whether they can generally out-
perform gradient-based inverse design once all computa-
tional costs associated with training are included.

A complementary approach to bottom-up, iterative op-
timization has been a recent surge of interest in funda-
mental limits, particularly in optics and photonics [41–
57]. Conventionally, bounds such as the Yablonovitch
enhancement limit in electromagnetism [58], or the
Mandelstamm–Tamm bounds in quantum control [59],
arise from identifying singular constraints in physical sys-
tems (density of states and energy–time uncertainty, for
the two examples). Recently, an alternative approach
was proposed in which computational bounds could be
found from an infinite set of constraints implied by in-
tegral [54, 60, 61] or differential [5, 62] equations. The
differential-equation-based approaches requires a trans-
formation to real-valued variables and a relaxation of the
design problem (cf. SM), while the matrices in the in-
tegral QCQPs are dense, due to their integral-equation
origins, leading to two issues: First, solving their semidef-
inite relaxations for bounds requires O(N4) computa-
tional time, for N degrees of freedom, which quickly be-
comes prohibitive and restricts analysis to few-degree-
of-freedom systems. Second, the ranks of the solutions
of the semidefinite relaxations are unbounded; as we de-
scribe in depth below, this means that the solutions of the
semidefinite programs may have little-to-no correlation
with physically meaningful structures, let alone optimal
designs.

The approach we describe here is a new, joint for-
mulation of physical design and its fundamental limits.
Starting with a generic specification of a physical de-
sign problem with differential-equation constraints, we
describe general techniques for transformation to a sparse
QCQP optimization problem. We show that the new
problem is mathematically equivalent to the original, yet
with a structure more similar to that of ptychography,
trajectory optimization, or matrix completion, instead
of conventional physical design. The “dual” [14] of our
sparse-QCQP problem is a (convex) semidefinite pro-
gram (SDP), whose solution always represents a funda-
mental limit across the design space of interest. More-
over, the sparse nature of the differential operators leads
to bounds on the rank of the solution of the SDP, which
often must be small (e.g., independent of the diameter of
a metasurface). A rank-one solution would represent the
globally optimal design across the design space; low-rank

solutions can potentially be regularized towards rank-one
solutions. We give an example of exactly such an ap-
proach, leading to a plausibly globally optimal nanopho-
tonic structure for a prototype problem on which “in-
verse design” struggles to overcome moderate-quality lo-
cal optima. Our formulation enables the identification of
bounds for optimal design with linear differential equa-
tions, and offers a new approach to circumvent the oscil-
latory landscapes that plague the design of wave-based
systems.

I. REFORMULATING PHYSICAL DESIGN

The prototypical design problem has a physical field ψ
(electromagnetic, quantum, etc.), designable degrees of
freedom χ (a susceptibility, a control-Hamiltonian am-
plitude, etc.), and a differential equation linking the two.
We consider differential equations that are linear in the
field variable. We denote by ξ a vector-field excitation
(which can be zero for an eigenproblem), representing
an incoming wave or initial condition. The goal is to
maximize (or minimize) some objective f(ψ) that is a
function of the field variable. Then the design problem
can be written:

max.
χ,ψ

f(ψ)

s.t. L(χ)ψ − ξ = 0,
(1)

where L represents the linear differential operator. We
include χ as an argument to L to emphasize the de-
pendence of L on the design variables. In nanopho-
tonics, where one might seek an optimal suscepti-
bility pattern χ(x) in space to harness electromag-
netic waves of frequency ω, the differential operator
is L = ∇ × ∇ × − [1 + χ(x)]ω2. In quantum con-
trol, one might seek an optimal pulse sequence χ(t)
representing the time-dependent amplitude of a control
Hamiltonian, Hc(t), relative to a background Hamilto-
nian, H0(t), in the Schrodinger operator, L = i ddt −
[H0(t) + χ(t)Hc(t)]. And similarly for elastic waves, with
the Christoffel equation, and many other linear differ-
ential equations of physics. To simplify the exposition
and clarify the complexity analysis, we will assume any
sufficiently high-resolution numerical discretization into
N spatial/temporal/polarization/Hilbert-space/etc. de-
grees of freedom, in which case the variables ψ and χ are
N × 1 vectors and L is an N ×N matrix (with suitable
boundary conditions encoded). The task of scientists and
engineers in disciplines from aerodynamic wing design to
nanophotonics to quantum information theory is to solve
optimization problems with forms similar to Eq. (1).

A. Physical design problems as QCQPs

Equation (1) is computationally prohibitive to solve
for a global optimum because the differential-equation
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constraint is nonconvex in the variables ψ and χ. (It
is “bilinear” in the pair of variables ψ and χ, but that
is of little help in searching for global optima.) In this
section, we show how to convert the differential-equation
constraints to quadratic constraints, ultimately leading
to the sparse-QCQP formulation of the design problem.

We consider the prototypical case in which there is
a binary choice for the design variable over each des-
ignable DOF, denoted χ1 and χ2, such as, for example,
designing a pattern of air holes in silicon, or a sequence
of on/off pulses in quantum control. We further assume,
for simplicity, that our design space has the full N de-
grees of freedom shared by the response fields. Typically
the number of degrees of freedom will be smaller than N ;
for example, perfectly matched layers are not part of the
designable region. The constraints associated with non-
designable regions are straightforward and described in
detail in the SM, and do not change the analysis below.
Our approach generalizes to different numbers of degrees
of freedom as well as to multilevel design problems, as we
discuss in the SM, but again these assumptions will clar-
ify the key logic and analysis. It is simple to enumerate
the design space: there are N degrees of freedom, each
of which can take one of two values, such that there are
2N possible designs. The 2N possible designs each have
fields ψ that must satisfy the N differential-equation con-
straints of Eq. (1).

The crucial insight is as follows: at each spa-
tial/temporal point i in the design space, either L(χ1)ψ−
ξ
∣∣
i

= 0 or L(χ2)ψ − ξ
∣∣
i

= 0. (The “
∣∣
i
” symbol should

be interpreted, for example, as selecting a single row
of a finite-difference matrix, or as integrating against a
single basis function in a finite element discretization.)
Consider the scalar-field case, for which each expression
L(χ1,2)ψ − ξ

∣∣
i

is a scalar expression. Then, enforcing a
logical OR condition between two scalar values is exactly
equivalent to forming a single constraint in which the
two scalar expressions are multiplied together; in other
words, enforcing (a == 0) OR (b == 0) is equivalent to
enforcing ab == 0. For the general vector-field case, the
vector OR condition can be replaced by pairwise inner-
product constraints. Each of these inner products is of
the form:

[L(χ1)ψ − ξ]† Di [L(χ2)ψ − ξ] = 0, (2)

where Di is the matrix that encodes the evaluation of the
two terms in square brackets associated with a particu-
lar susceptibility degree of freedom and † represents the
adjoint (conjugate transpose) operation. For example, in
a finite-difference scheme, Di is a block-diagonal matrix
(or any linear combination thereof) whose only nonzero
elements occur at point i in space/time, with nonzero
off-diagonal elements only in polarization/Hilbert space.
Enforcing Eq. (2) over all independent block-diagonal Di
matrices is equivalent to enforcing the logical-OR condi-
tion at all points in space/time, as intuitively justified
above and rigorously proven in the SM. The number of
independent constraints of the form of Eq. (2) scales lin-

early with N , as one intuitively expects for N degrees of
freedom.

Clearly the constraints of Eq. (2) are necessarily sat-
isfied by any solution of the original design problem,
Eq. (1). Perhaps surprisingly, the constraints of Eq. (2)
are also sufficient conditions for the design problem.
Hence we can discard the original differential equation
constraints, and specify a new, equivalent design prob-
lem:

max.
ψ

f(ψ)

s.t. [L(χ1)ψ − ξ]† Di [L(χ2)ψ − ξ] = 0 ∀i.
(3)

To see why the constraints of Eq. (3) are sufficient con-
ditions, consider an optimal solution ψ of Eq. (3). From
ψ, one can check every constraint i to determine at each
space/time point whether χ1 or χ2 is the optimal design
variable at that point. The resulting pair of ψ and χ will
then necessarily satisfy the constraint of Eq. (1), imply-
ing that any solution of Eq. (3) is a viable solution of
Eq. (1). As the optimal solutions of each problem are
within the other’s feasible set, and the objectives are the
same, the optimal solutions must coincide. Hence, the
two design problems have equivalent optima.

What is the intuition behind the quadratic constraints
of Eq. (3)? They turn out to have a simple, general
physical interpretation. Each constraint in Eq. (3) rep-
resents a complex-valued conservation law at each point
in space/time of the designable domain (cf. SM for a
derivation). In electromagnetism, they represent local
conservation of real and reactive power flow. In quan-
tum control, they represent local conservation of complex
probability. And similarly for other physical systems. A
close analog arises in circuit design. When one wants
to find the steady-state response of a complex config-
uration of resistors, capacitors, and inductors, the first
choice typically is not solving circuit differential equa-
tions. Instead, one solves Kirchhoff’s current and voltage
laws, two conservation laws for every node of the system.
The constraints of Eq. (3) are akin to generalized Kirch-
hoff’s laws for any linear-differential-equation-based de-
sign problem.

The design problem of Eq. (3) has a different math-
ematical structure from Eq. (1). First, in Eq. (3), the
design variable χ is no longer a degree of freedom. In-
stead, the 2N possible design configurations are encoded
in the O(N) quadratic constraints of Eq. (3). Now, the
only degrees of freedom are in the field variable ψ, and
the constraints are all quadratic forms in ψ. Objective
functions f(ψ) of interest, such as power flow or mo-
mentum transfer in electromagnetism or state transfer,
fidelity, and related objectives in quantum control, will
also be quadratic (or linear) forms of ψ. Hence, our new
design problem is a quadratically constrained quadratic
program, or QCQP.

Figure 1 schematically illustrates the change in view-
point brought on by the transformation to a QCQP.
We consider as an example the Helmholtz equation, in
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FIG. 1. (a) The usual writing of a differential equation specifies different operator values at different space/time points
according to the design variable (e.g. material susceptibility) χ. One can specify a structure (top right, a material with χ = 3
and approximately half-wavelength thickness, for a finite-difference discretization of the Helmholtz equation) and compute the
corresponding field response (bottom right). (b) Our approach identifies quadratic constraints satisfied by all possible designs.
Any field that satisfies these constraints (e.g. top right) will imply a corresponding design (bottom right, χ = 3) that produces
the field. If the field optimizes an objective of interest, then the corresponding structure will be an optimal design.

which wave speed can take values 1 (background) or 1/2
(patterned material), which corresponds to susceptibil-
ity values of χ2 = 1 and χ1 = 3, respectively. The
domains depicted in Fig. 1 are 5 wavelengths in size
(with half-wavelength perfectly matched layers surround-
ing them). Figure 1(a) shows the specification of a struc-
ture in space, which prescribes the precise form of the cor-
responding linear operator. From the structure-specific
operator, one can compute the fields. This is a pow-
erful simulation tool, but it inhibits optimization ap-
proaches beyond gradient descent (local structural per-
turbations). Figure 1(b) shows the QCQP perspective, in
which quadratic constraints are formed that must be sat-
isfied by all possible designs. Optimizing over fields that
satisfy these constraints, for example via semidefinite-
programming techniques, can lead to discovery of opti-
mal designs.

B. Many sparse QCQPs are nearly convex

The next question is whether the QCQP of Eq. (3) of-
fers mathematical advantages over the original problem.
QCQPs are generically NP hard [63, 64], just as the origi-
nal problem is. (If this were not true, Eq. (3) would prove
that P = NP.) Yet QCQPs arise across many areas of
science and engineering, and there is well-developed ma-
chinery for exploiting their specific mathematical struc-
ture [15, 17, 65–68]. Geometrically, a set of quadratic
constraints represents the intersection points of hyper-
boloids and ellipsoids; direct optimization over such in-
tersections requires combinatorial algorithms. However,
one can “lift” the problem to a higher-dimensional space,
where the quadratic constraints in the original variables
become linear (and therefore convex) constraints in a
new matrix variable. This process introduces two addi-
tional constraints: a (convex) positive-semidefinite ma-
trix constraint, and a nonconvex constraint on the rank

of the new matrix. In this new, higher-dimensional set-
ting, the objective and all constraints are convex, ex-
cept for the rank constraint. In essence, all of the non-
convexity of the problem is isolated into the single rank
constraint. This offers two exciting possibilities. First,
one can simply drop the rank constraint, leaving a con-
vex problem whose efficiently computable solution will
always represent a bound, or fundamental limit, on the
problem of interest. Second, the sparsity of differential
operators can in some cases provably lead to low-rank so-
lutions of this relaxed, convex problem, suggesting that
many physical design problems may be “nearly convex”
in this high-dimensional space. Then one may be able
to introduce a rank-penalizing regularization that leads
to high-quality, high-performance optimal designs that
are superior to those found by typical gradient-descent-
based techniques. In this section we first introduce the
general “lifting” procedure, then we describe our pro-
posed convexity-related approach to fundamental limits
and novel designs.

The QCQP of Eq. (3) can be expressed generally as:

max
ψ

ψ†Aψ + Re
[
α†ψ

]

such that ψ†Biψ + Re
[
β†
iψ
]

+ ci = 0,
(4)

where i iterates over all constraints
(space/time/polarization/etc.), A and α are defined
by the objective of interest, and equations are kept
real-valued by separating the real and imaginary parts of
the constraints of Eq. (3). “Lifting” is now well-known
and well-understood (Ref. [67] is one review); we include
here a brief summary. The objective and each constraint
of Eq. (4) are scalars, and one can trivially take the
matrix trace of each. A trace is invariant under cyclic
permutations; for example, Tr(ψ†Aψ) = Tr(Aψψ†). If
we denote a new matrix variable X = ψψ†, the quadratic
form ψ†Aψ becomes a linear form, Tr(AX), in the new,
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higher-dimensional matrix variable X. The linear forms
in the original equation are straightforward to handle
with conventional methods [67], ultimately leading
to modified matrices A and Bi whose expressions are
explicitly given in the SM. However, the entries of the
matrix variable X are not free to take on any values;
because X represents the outer product of a vector with
itself, it must have rank 1 and be positive semidefinite.
Following these steps, we can rewrite the QCQP of
Eq. (3) and Eq. (4) as:

max
X

Tr(AX) (5)

such that Tr(BiX) = bi

X ≥ 0

rank(X) = 1.

The trace-based objective and constraints are linear in
X, while the positive-semidefinite requirement is a con-
vex cone constraint. Whereas each differential-equation-
based constraint of the original problem was nonconvex,
our new, equivalent problem in Eq. (5) has a convex ob-
jective and many convex constraints; the only nonconvex
part of the problem is the rank-one constraint.

The observation that the rank-1 constraint is the only
nonconvex part of the problem offers insights into “how
convex” the design problem is in the lifted, higher-
dimensional space. If we just drop the rank-1 constraint,
the resulting problem, a semidefinite program (SDP), is
convex. The question, then, is how large of a penalty
one pays by dropping the rank-1 constraint and solving
the SDP. For the famous NP-hard “max-cut” problem,
in which one seeks to identify the maximum number of
edges in a graph partition, an SDP relaxation is guaran-
teed to have a solution that is within 12% of the global
optimum [66]. For most examples of lifting there is no
such known bound; instead, the rank of the solution of
the SDP is used as a measure of how convex the prob-
lem is. For example, if the rank of the SDP solution is
quite large, then the solutions of the SDP and the orig-
inal QCQP may be wildly different. In that case, the
rank-1 constraint is clearly important for finding the cor-
rect solution, and it is unclear if a convex problem can
lead one close to the optimal solution. By contrast, if the
rank of the convex problem is small, then one can imagine
making slight tweaks to the problem (e.g. adding a regu-
larization or penalty function) to find a rank-1 solution of
a related convex problem, which may be a high-quality
solution of the original problem. (We show a numeri-
cal example of this type below.) Hence, the rank of the
relaxed problem, the SDP, is an indication of how non-
convex the design problem is.

Strikingly, in certain physical scenarios we can use
the sparsity of differential operators to prove that the
rank of the computed solution of the relaxed problem
is “small;” in particular, that the rank of the solution
is bounded above by a constant that is independent of
the long dimension of the problem. Bounds on the so-
lutions of SDPs are common in problems with sparse

matrices [69], which we use in tandem with the differ-
ential operators that comprise A and Bi of Eq. (5). The
matrix entries of the variable X form a set of vertices,
and the nonzero entries of the objective and data matri-
ces, A and Bi, comprise edges of an undirected graph on
those vertices. If the graph is chordal, then the size of
the largest clique is known to be a bound on the maxi-
mum rank of a solution of the SDP [69]. (A brief review
of the relevant graph-theoretic terms is provided in the
SM.) If the graph is not chordal, then a bound can be
found from any chordal extension of the graph. As we
show in the SM, for any linear-differential-equation-based
physical design problem that has one “long” dimension
(e.g. waveguides, metasurfaces with translational or ro-
tational symmetry, quantum control problems with time
as the long dimension), the clique number is bounded
above by a problem-size-independent constant. These
physical design problems are provably “close” to convex
optimization problems.

C. A convex optimization paradigm for physical
design

In this section, we formulate two convex-optimization-
related approaches to the design problem of Eq. (5).
First, we define the SDP discussed above, with the rank-
1 constraint dropped from the problem, which leads to
bounds on any design problem of interest. Our second
approach is to augment the SDP with a penalty term
(typically convex) that encourages very-low-rank or even
rank-1 solutions to the semidefinite program. This offers
a new approach to designing physical structures, which
comes with the possibility of avoiding many low-quality
local optima.

Our first formulation simply drops the rank-1 con-
straint from Eq. (5), leaving the SDP:

max
X

Tr(AX) (6)

such that Tr(BiX) = bi

X ≥ 0.

Equation (6) is a relaxation of the original physical de-
sign problem, and as a convex optimization problem, its
global optima can be found efficiently via interior-point
methods [14]. A key feature of the solution is that it will
always represent an upper (lower) bound to the objective
to be maximized (minimized). This results directly from
the dropping of the rank-one constraint; alternatively, it
is known that Eq. (6) is equivalent to the dual problem of
Eq. (5), and dual-problem solutions always bound their
“primal” counterparts. A key feature of Eq. (6) is that
it can be decomposed into smaller, coupled sub-problems
when the matrices A and Bi are sparse. From Eq. (3),
one can see that the sparsity of the matrices Bi is deter-
mined primarily by Li, the differential operator, which is
typically (e.g. in the case of the Laplacian) quite sparse.
Fig. 2 demonstrates the sparsity patterns of the product
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𝕃 (diff. operator) 𝕃!𝕃 chordal completion of 𝕃!𝕃

Metasurface
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2 4 6chordal decomposition

: operator
: operator

: chordal completion

Clique #1 Clique #2 Clique #3
metasurfacesimulation domain

𝕃 = ∇!

Three-level HamiltonianMultilayer film

(a)

(c)(b)

FIG. 2. (a) Differential equations on any domain (black grid) have a sparsity pattern that can be represented in an undirected
graph (vertices 0–8). The chordal completion of that graph can be decomposed into “cliques,” smaller domains on which the
problem can be defined. (b) The rank of the corresponding SDP, a measure of the nonconvexity of the design problem, is
bounded above by the largest clique size. For dense matrices (as arise in integral equations), this is simply proportional to the
size of the problem (red). By contrast, the sparsity of differential operators leads to maximum clique sizes that are bounded
above by a constant unrelated to the “long” dimension of a physical-design problem. (C) Chordal completions of the sparsity
patterns arising in various differential-equation-based design problems in electromagnetism and quantum information theory.

L†L that arises in Eq. (6), for the differential operators
of electromagnetism and quantum mechanics. Significant
dimensionality reduction requires a strong form of spar-
sity: not only many zero entries, but also chordal sparsity.
The chordal completion of the L†L operator is depicted
in green in Fig. 2(b); the sparsity of this matrix deter-
mines the extent to which the SDP can be compressed
(losslessly). Moreover, a sparse chordal completion leads
to small maximal clique sizes, as depicted in Fig. 2(c),
in stark contrast to SDPs formed from dense matrices.
These maximal clique sizes are bounded above by a con-
stant unrelated to the long dimension of the problem,
suggesting that the SDP solutions may be informative
for many design problems, which we support with nu-
merical evidence in the next section.

The second approach is to augment the semidefinite
program of Eq. (6) to promote solution matrices with
ranks close to or equal to one. While the rank opera-
tor itself is a nonconvex quantity, there are well-known
proxy quantities that promote low rank, such as the ma-
trix trace, which is known to be the best convex lower
bound on rank for matrices with constrained singular val-
ues [70]. In feasibility problems, as occur, for example,
in ptychographic imaging, one replaces the rank-1 con-
straint with an objective that promotes low rank [15]. For
design problems, in which there is already an objective
of interest, we can add a regularizer, i.e., a penalty for
high-rank solutions, to the original objective. If we de-
note by R(X) a functional proxy for the rank of a matrix
X, then we can modify Eq. (6) to form the augmented

program,

max
X

Tr(AX)− γR(X) (7)

such that Tr(BiX) = bi

X ≥ 0,

where γ can be adjusted to balance the original objec-
tive with the goal of a low-rank solution. The key idea is
simple: if Eq. (7) has a rank-one solution (thanks to the
regularization), then one has found the global optimum
of a QCQP that is not exactly equivalent to the original
QCQP of Eq. (5), but is similar to it. (The smaller γ is,
the more similar the two problems are.) Intuitively, the
global optimum of a slightly modified problem is likely
to be a high-quality solution of the original problem, an
idea that has been supported in previous numerical ex-
periments across optimization theory, ptychography, and
optimal power flow [6, 15, 66–68, 71], and is further sup-
ported by our results in the next section.

Equations (5–7) are key results of this paper. Equa-
tion (5) is the culmination of an exact transformation
of a wide range of physical design problems, with ob-
jectives subject to differential-equation constraints, into
sparse QCQPs. This connection to a common mathemat-
ical structure leads to Eqs. (6,7), the first of which is a
convex problem that is guaranteed to identify bounds for
the problem of interest, and the second of which offers a
new approach to physical design, with the possibility for
circumventing low-quality local optima. In the next two
sections, we perform numerical experiments that demon-
strate the power of these transformations.
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FIG. 3. (a) Metalenses use nanophotonic patterning to focus incoming light. As a function of the diameter d and thickness t of
the metalens, bounds on the maximal focal-point field intensity can be computed, shown in (b), using the SDP of Eq. (6). If the
solution is low rank, as for the red curve, the solution of the SDP can be used to find designs (field intensity in black markers,
structure in insets) that nearly achieve the global bound. (c) Conservation-law bounds can be much smaller than simpler
approaches, such as unitarity. (d) The differential form of the Maxwell equations in the SDP leads to much linear-in-diameter
scaling of computation times, enabling bounds for diameters up to 100 wavelenths.

II. LARGE-SCALE COMPUTATIONAL
BOUNDS

In this section, we demonstrate the utility of our
sparse-QCQP-based SDP, of Eq. (6), for enabling com-
putational bounds of large-scale systems for which such
analysis is impossible with the current state-of-the-
art methods. “Metasurfaces,” in which one patterns
a wavelength-scale-thickness material to achieve high-
performance optics functionality in compact form factors,
offer a compelling example [1, 2, 72–76]. A metalens is a
metasurface that focuses light to a single focal spot, and
one typically wants a maximally efficient metalens with
a diameter significantly larger than the free-space opti-
cal wavelength. In Fig. 3, we consider a two-dimensional
metasurface with diameter d, thickness t, refractive index
n =

√
2, and numerical aperture NA = 0.9, and pose a

fundamental question: what is the maximum possible ef-
ficiency any designable pattern could achieve? To answer
this question, we formulate the Maxwell-constrained de-
sign problem of Eq. (1), transform the problem to the
sparse QCQP of Eq. (5), and relax the problem to the
SDP of Eq. (6). We exploit the sparsity of the differen-
tial operators using the clique-decomposition technique
outlined in Fig. 2, with the open-source software pack-
age SparseCoLO [77], to dramatically reduce the size of
the SDP and enable computation of large-scale bounds.
Fig. 3(b,c) show bounds on the field intensities as a func-
tion of metalens diameter. One can see that the maxi-
mum field intensity depends sensitively on the metasur-
face thickness, and is well below the “unitary bound”
arising from imposing unitarity constraints on the scat-
tering matrix (cf. SM). A natural question is whether
these bounds are achievable, and we include in Fig. 3(b)
four notable data points (black markers): designs taken
from the first singular vectors of the SDP solutions can
achieve real performance levels almost exactly coincid-
ing with the bounds themselves; the designs found by
this SDP procedure are shown in the blue inset patterns.

Crucially, the sparsity enables computation at very large
scale sizes. Whereas integral-equation formulations of
QCQP bounds, as in Refs. [54, 60], require computa-
tional times that scale with the fourth power of the meta-
surface diameter, the differential-equation-based bounds
scale linearly, enabling bounds for devices with diameters
up to 100 free-space wavelengths in size.

III. A NEW APPROACH TO DESIGN

Having shown the success of the SDP approach to
large-scale bounds, we now turn to the question of
whether our lifted-QCQP framework can lead to a new
design approach altogether. The idea is to use the regu-
larized form of the lifted QCQP, in Eq. (7), to promote
a rank-one solution of the lifted problem, which will be
a global solution of a closely related QCQP. To test this
approach, we consider a canonical example that show-
cases the difficulty of physical design in the presence of
wave-interference effects: a multilayer nanophotonic film,
with waves scattering back and forth between the many
possible layers. We consider a maximum-reflection prob-
lem as shown in Fig. 4, with a design region of multi-
ple (in this case, four) free-space wavelengths, to achieve
perfect reflection (reflection magnitude 1) with a specific
reflection phase (arbitrarily chosen to be −0.3π). We
consider a slightly lossy material (with refractive index
n = 2.3 + 0.03i, with a loss tangent typical of lossy ma-
terials in the visible); otherwise, any random collection
of enough scatterers could generate perfect reflection (as
in white paint). First, we run 100 full optimizations of
“inverse design” [23, 26]; we use a typical implementa-
tion of inverse design, with the widths of the films as
the degrees of freedom, and adjoint-based simulations to
speed up the gradient calculations. We use a standard
quasi-Newton “interior-point” algorithm of Matlab, with
default convergence criteria, and we start with about half
of the region as air and half as the material, with 80 lay-
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FIG. 4. (a) Schematic of a simple design problem with significant wave-interference effects: achieving large reflection, with a
specific phase, from a multilayer stack of a slightly lossy material and an air background. (b) Inverse designs using interior-
point methods to use adjoint-based gradient information can easily be rapped in local optima; the bulk of the optimization
runs converge to 40–50% locally optimal efficiencies, while the best run, out of 100, finds a design with 88% reflectivity. (c,d) A
single, iterative optimization using the augmented-SDP of Eq. (7) leads to a design (design widths in SM) that achieves 96.9%
efficiency, far outperforming even the best of the 100 inverse-design runs.

ers whose widths are randomly chosen between 0 and
100 nm. (With significantly fewer than 80 layers, the op-
timizations tend to fall into even more low-quality local
optima, while going well above 80 imposes a significant
computational burden. The choice of 80 optimizes the
tradeoffs between these competing effects.) Results from
the 100 optimization runs are shown in Fig. 4(b), with
the bulk of the optimizations converging to designs with
reflectivity between 40–50%, and the very best single de-
sign achieving only 88% reflectivity. Ten designs—eight
random, alongside the two best—are shown on the left-
hand side of Fig. 4(b), showing the many different locally
optimal designs that are discovered. Clearly one can see
that gradient-based algorithms are prone to converging
to local optima, especially for a problem with significant
wave reflections.

To tackle this problem with an augmented SDP, per
Eq. (7), we adapted an algorithm developed in Ref. [78]
for QCQPs that arise in optimal power flow applications.
The rank of a matrix can be written as a summation of
step functions applied to the singular values of the ma-
trix; in Ref. [78], they use a smooth approximation for the
step function to construct the rank-penalization function
R(X). This function is well-suited for a majorization–
minimization (MM) algorithm that is tailored to concave
objectives subject to a convex constraint set. The MM al-
gorithm applied as in Ref. [78] iteratively solves semidef-
inite programs with rank-penalized objectives until a lo-
cally optimal rank-one solution is found, at which point a

hyperparameter can be tweaked if one wants a certificate
of global optimality. We find the latter step unnecessary,
with a single (iterative) local optimum repeatedly show-
ing quite good performance. Running the algorithm on
the lossy-material high-reflection optimization discussed
above leads to the result is shown in Fig. 4(c): a design
that achieves 96.9% reflectivity (and the correct phase),
in a single optimization run, without any fine-grained
hyperparameter tuning. One can see the difference be-
tween this approach and the inverse design approach in
Fig. 4(d), where the 100 initial reflectivities and locally
optimal inverse-design reflectivities are shown in gray and
orange, respectively, and the single lifted-QCQP-based
optimization is shown in the blue marker. Clearly, the
lifted-QCQP approach leads to a better design, with a
more robust design process. One cannot directly com-
pare the number of simulations used in each approach,
as the lifted-QCQP optimization does not do any “simu-
lations” at each iteration, but the typical inverse-design
optimization required 21 seconds on a 2021 Macbook Pro,
for a total of 35 minutes for the 100 optimization runs,
with a maximum reflectivity of 88%. The lifted-QCQP
optimization took 5 minutes on the same computer, lead-
ing to a design with 96.9% reflectivity. (The reported
time is the full runtime, with all subroutines and itera-
tions included.) Moreover, the design discovered in the
lifted-QCQP approach appears to be a quite plausible
global optimum for this problem. Having seen the de-
sign, one can explain the physics of its operation: the
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spacings between consecutive films are nearly exactly half
a wavelength, to create constructive interference in the
reflected wave. Moreover, the films show a thickness gra-
dation, which is sensible given the lossiness of the ma-
terial: the first layers are likely to interact with many
scattered waves, and should be thin to avoid material
losses, while the rear layers simply need to reflect the
waves at any cost and can be thicker as a result. (The
thicker first layer likely sets the correct phase.) Hence
this result shows not only very good performance, but is
suggestive of discovering a near-globally-optimal design,
as anticipated in the theoretical derivations of Sec. I C.

IV. DISCUSSION AND CONCLUSION

In this paper, we have connected design problems sub-
ject to the dynamics of the linear differential equations
of physics to modern convex optimization theory. By
rewriting these design problems as conservation laws de-
fined by differential operators, we identify a unique struc-
ture pervasive across physical design problems: they can
be transformed to sparse QCQPs. Sparse QCQPs can
be lifted to higher dimensions, where their SDP relax-
ations offer a general framework for large-scale computa-
tional bounds. Tantalizingly, regularizing the SDP can
lead to efficient techniques for identify designs that may
often approach the global optima, as we demonstrated for
an electromagnetic design problem subject to significant
amounts of speckle and wave-interference effects.

Many areas of science and engineering, including op-
timal power flow [68, 71], ptychography [15, 16], VLSI
design and Ising problems [79], and more, have bene-
fited from connections to semidefinite programming go-
ing back two decades [67]. It had seemed that wave-
physics and related physical design problems simply had
unfavorable mathematical structure, where such tech-
niques would not work, but our approach shows that even
wave-based design problems can fit into this paradigm.
One concern might be the significant computational cost
of standard SDP solvers—they have polynomial run-
times, but the polynomial is typically 3.5 or 4 (i.e.,
runtime scales as N3.5 or N4 for N degrees of free-
dom), which prevents the application of SDPs to large-
scale optimization problems [67]. Auspiciously, there has
been significant recent progress in computational algo-
rithms for semidefinite programming [16, 80–83]; in one
recent work [16], SDPs with 107 designable degrees of

freedom, corresponding to 1014 matrix variables, were
solved. Moreover, whereas we used the chordal sparsity
in tandem with clique decompositions that are possible
when one dimension of the problem is significantly larger
than any others, newer SDP techniques such as those of
Ref. [16] can exploit broader sparsity characteristics, be-
yond just chordal sparsity. These improvements may be
readily adaptable to our physical-design SDPs.

Looking forward, there is ample opportunity to ap-
ply this technique broadly across many applications in
photonics, quantum control, elasticity, and more. In
addition to the scalability improvements enabled by
the differential-equation formulation, discussed above,
another feature of our approach is that it can work
seamlessly with the many open-source and commercial
differential-equation solvers in widespread use. As an
example, in the SM, we show that one can create an
SDP directly from the governing matrix equations cre-
ated by Comsol [84] and successfully identify the correct
bounds. This suggests the possibility for our approach
to become widely adopted across common differential-
equation solvers.

An interesting contrast between our approach versus
“inverse design” and deep-learning approaches is that
the latter are “structure-blind:” aside from changes in
the oracle functions to be called, the algorithms are not
meaningfully modified for different design problems (lin-
ear, nonlinear, chaotic, etc.). Our approach specifically
applies to physical design problems with bilinear struc-
ture in the field and geometric degrees of freedom (which
are quite widespread), and cannot be generically applied
to any problem. This is consistent with the “no free
lunch” theorem [85]: there cannot be a single optimiza-
tion method that is superior to others on all optimization
problems. Our results suggest that a bespoke approach,
with algorithms tailored to the underlying mathemati-
cal structure of the design problem of interest, may lead
to a suite of design approaches that are superior to the
structure-blind algorithms used today.
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S. G. Johnson, Fundamental limits to optical response in
absorptive systems, Optics Express 24, 3329 (2016).

[43] O. D. Miller, S. G. Johnson, and A. W. Rodriguez, Shape-
independent limits to near-field radiative heat transfer,



11

Physical Review Letters 115, 204302 (2015).
[44] J.-P. Hugonin, M. Besbes, and P. Ben-Abdallah, Funda-

mental limits for light absorption and scattering induced
by cooperative electromagnetic interactions, Physical Re-
view B 91, 180202(R) (2015).

[45] O. D. Miller, O. Ilic, T. Christensen, M. T. H. Reid,
H. A. Atwater, J. D. Joannopoulos, M. Soljačic̀, and S. G.
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I. DETAILED CONSTRAINT-FORMULATION METHODOLOGY

In this section, we provide further details on the form of the quadratic constraints introduced in the main text. We
start with the differential equation

L(χ)ψ − ξ = 0. (1)

We will assume a discretization for which there are N designable points in space/time, there are M non-designable
points in space/time (e.g. PML regions, background materials, etc.), and that there are P vector (polarization, Hilbert-
space, etc.) degrees of freedom at each point in space/time. Then ψ and ξ both have sizes (N +M)P × 1, and L is a
matrix of size (N +M)P × (N +M)P . We will take the typical case in which the control field χ can be controlled at
each designable space/time point, but does not have independent levers of control along the polarization/Hilbert/etc.
axis. (For example, we are assuming one cannot independently control the material properties of each polarization
at a given point in space in a nanophotonics problem. Such control in fact slightly reduces the size of the ultimate
QCQPs, and slightly simplifies the analysis below.)

First, let us tackle what happens at a designable point in the domain. If we denote this point i, then

(L(χ1,2)ψ − ξ)
∣∣
i

(2)

is a P × 1 vector for each of χ1 and χ2. We want to enforce the condition that

either (L(χ1)ψ − ξ)
∣∣
i

= 0 or (L(χ2)ψ − ξ)
∣∣
i

= 0, (3)

where the zeros are the right-hand sides are the zero vectors. Consider two vectors a and b, both of size P × 1, for
which we want to enforce the condition that either one of the vectors is the zero vector. How can we do that? The
key is to enforce

a∗j bk = 0, ∀j, k, (4)

i.e., to force each pairwise inner product to be zero. This expression says that for each j, k, one of the two entries must
be zero. (Or both, but that is typically forbidden by the form of L(χ).) The only way for this condition to be met
for all j and k is for all of the entries of one of the vectors to be zero. This can be proven by contradiction. Suppose
both vectors are nonzero—that is, they each have at least one element that is not zero—and that they satisfy Eq. (4).
Then choose j and k to be the indices of nonzero elements in each vector. Their product is not zero, contradicting
the requirement that Eq. (4) be satisfied. Thus we see that Eq. (4) requires (at least) one of the vectors to be zero,
which is exactly the either–or condition that we desire.

We can alternatively write the condition of Eq. (4) in matrix form,

a†Djkb = 0, ∀j, k, (5)

where Djk is a P × P matrix with all zeros except a single entry of 1 in its j, k element. Now let us return to the
differential equations of above. We can just directly substitute (L(χ1)ψ − ξ)

∣∣
i

for a, and similarly but with χ2 for b,
to get

(L(χ1)ψ − ξ)†
∣∣
i
Djk (L(χ2)ψ − ξ)

∣∣
i

= 0. (6)

Finally, we clean up the notation a bit. In Eq. (6), i is in index for the space/time point, while j and k are indices in
the polarization/Hilbert space. We can wrap all of these into a single index i that iterates over all space/time points
and all polarization/Hilbert-space combinations; we can also enlarge D to be a fully (N +M)P × (N +M)P matrix
(instead of smaller P ×P matrices iterated N times), now just with all entries of the larger matrix being zero except
at single 1 at the ith entry. Then we can drop the evaluation of the vectors at i (since multiplication by the entire
D matrix effectively does this already), and we can write Eq. (6) in exactly the same form as expressed in the main
text,

[L(χ1)ψ − ξ]† Di [L(χ2)ψ − ξ] = 0. (7)

Next, we tackle the non-designable points in the design space. At each of those points, there are not two possibilities
for χ, but instead only a single one—whatever the background material is at that point in the domain. Hence, we
enforce MP linear constraints of the form

[L(χi)ψ − ξ]
∣∣
i

= 0. (8)
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However, once the problem is lifted and relaxed in a higher-dimensional space, it is not clear that these constraints
will be binding, and indeed it has been found quite useful for some QCQPs to add seemingly redundant constraints
to their formulation; those constraints are not redundant in the lifted, relaxed space [1]. We find it helpful to add
MP 2 quadratic forms exactly equivalent to Eq. (7) at each nondesignable point, except that now both terms have χi
in them:

(L(χi)ψ − ξ)† Di (L(χi)ψ − ξ) = 0. (9)

The constraints of Eqs. (7–9) form all of the constraints of the system. In total, there are (N + M)P 2 quadratic
constraints, and MP linear constraints.

What if one has multilevel level controls? If there were three possible control-field values, χ1, χ2, and χ3, then
the natural analog of the approach above is to multiply each of the three expressions, L(chii)ψ − ξ, together, to
form a single constraint, which would then be a third-order polynomial in ψ. More generally, for N possible control-
field values, one would form N th-order polynomial constraints by this approach. It is well-known that optimization
problems with polynomial objectives and polynomial constraints are a subclass of QCQPs—cf. Sec. 2.1 of Ref. [2].
The key idea is the extra variables can be introduced to reduce the order of the problem, at the expense of additional
constraints. For example, if a constraint is y3 = 0, one equivalently enforce xy = 0 and x = y2; in this example, two
second-order (at most) constraints are equivalent to the single third-order constraint.

II. INTERPRETING THE QUADRATIC CONSTRAINTS AS CONSERVATION LAWS

In this section, we justify our statement that a constraint of the form

[L(χ1)ψ − ξ]† Di [L(χ2)ψ − ξ] = 0 (10)

represents a conservation law. To do so, we first go back to the continuous representation, in which L is an operator
and ψ is a vector field, and rewrite Eq. (10) as an overlap integral. The matrix Di in Eq. (10) has a single nonzero
entry; its purpose is to isolate a single space/time point and specific polarizations (Hilbert-space indices) for the two
equations. A similar isolation of specific space/time/polarization/etc. locations can be achieved in continuous space
by taking an inner product with a function vi that encodes the desired localization. Hence we can write

〈L(χ1)ψ − ξ,L(χ2)ψ − ξ〉vi = 0, (11)

where 〈x, y〉v =
∫
x†vy, and † denotes the adjoint operator. To simplify notation below, we will assume χ2 is always

zero, and rewrite χ1 as χc, as the “background” control field can always be shifted to make this true, such that the
quadratic constraint is:

〈L(χc)ψ − ξ,L(0)ψ − ξ〉vi = 0. (12)

In the following subsections, we use the explicit forms of L(χ) in electromagnetism and quantum control to show that
Eq. (12) can be interpreted as a conservation law.

A. Electromagnetic design

We consider Maxwell’s equation describing a monochromatic field at frequency ω in a nonmagnetic material (i.e.,
the relative permeability is µr = 1 everywhere in space). The electric field E(x) can be written as

[
∇×∇×− (1 + χ(x))ω2

]
E(x) = iωJ(x). (13)

where J(x) are source currents, χ is the (designable) susceptibility, and we use dimensionless units where the vacuum
permittivity and permeability are both 1. In line with the discussion above we take χ to be allowed two values, 0 or
χc. Then,

L(χc) = ∇×∇×− (1 + χc)ω
2. (14)

To simplify our notation, we will define a background-L operator,

L0 = ∇×∇×−ω2, (15)
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so that L(χc) = L0 − χcω2. Then Eq. (12) can be written:
〈
L0E− iωJ,L0E− ω2χcE− iωJ

〉
vi

= 0. (16)

Multiplying by a factor χ−1
c /ω2 and rearranging leaves us with the constraint:

〈
(L0E− iωJ) ,

χ−1
c

ω2
(L0E− iωJ)

〉

vi

− 〈L0E,E〉vi − iω 〈J,E〉vi = 0, i = 1, 2, 3 . . . (17)

To see the equivalence of this form to a power conservation law, we introduce the “polarization density”

P = χE =
1

ω2

([
∇×∇×−ω2

]
E− iωJ

)
. (18)

Using this definition in the constraint we have derived in Eq. (17) we have

ω2
〈
P, χc

−1P
〉
vi
− 〈∇×∇×E,E〉vi + ω2 〈E,E〉vi − iω 〈J,E〉vi = 0, i = 1, 2, 3 . . . (19)

We can further simplify the second term; using Maxwell’s equation ∇×E = iωH and the vector identity
A · (∇×B) = B · (∇×A)−∇ · (A×B), we have

〈∇ ×∇×E,E〉 = −iω 〈∇ ×H,E〉

= −iω 〈H,∇×E〉+ iω

∫
dV ∇ · (E×H∗)

= ω2 〈H,H〉+ iω

∮
dA (E×H∗) · n,

(20)

where in the last step we used the divergence theorem to express the second term as a surface integral. Next, we turn
to the first term in Eq. (19); at points where χ(x) = χc we know that E = χ−1

c P. This is not true in regions where
χ(x) = 0, however, in these regions P = 0. Hence, we can rewrite the inner product as

〈
P, χc

−1P
〉

= 〈P,E〉. All
together, this leaves us with

iω 〈P,E〉vi + iω 〈E,E〉vi − iω 〈H,H〉vi +

∮
dA (E×H∗) · n + 〈J,E〉vi = 0, i = 1, 2, 3 . . . (21)

which is precisely the complex Poynting theorem for the case of non-magnetic material [3].

Six-vector notation

We can write a general six-vector form for Maxwell’s equations; denoting the fields ψ(x) =
(
E H

)T
and the current

sources ξ(x) =
(
J K

)T
, we have

(
0 ∇×
−∇× 0

)
ψ + iωψ + iωχψ = ξ, (22)

where χ is the material susceptibility tensor, which can have both electric and magnetic (and magnetoelectric)
components. We assume the susceptibility tensor can take one of two values at each point in space χ(x) ∈ {0, χc},
and we can define the operator

L0 =

(
0 ∇×
−∇× 0

)
+ iωI, (23)

such that we have the constraint
〈

(L0ψ − ξ) ,
χ−1
c

iω
(L0ψ − ξ)

〉

vi

+ 〈L0ψ,ψ〉vi − 〈ξ, ψ〉vi = 0, i = 1, 2, 3 . . . (24)

Defining a “polarization field”

φ = χψ =
i

ω
(L0ψ − ξ) , (25)
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we have

−iω
〈
φ, χ−1

c φ
〉
vi

+

〈(
0 ∇×
−∇× 0

)
ψ,ψ

〉

vi

− iω 〈ψ,ψ〉vi − 〈ξ, ψ〉vi = 0, i = 1, 2, 3 . . . (26)

As we saw earlier, in regions where χ = χc we have χ−1
c φ = ψ, and where χ = 0 the polarization vanishes (φ = 0),

such that we can rewrite the first term

−iω 〈φ, ψ〉vi +

〈(
0 ∇×
−∇× 0

)
ψ,ψ

〉

vi

− iω 〈ψ,ψ〉vi − 〈ξ, ψ〉vi = 0, i = 1, 2, 3 . . . (27)

Taking the real part of Eq. (27), we have a statement of the real Poynting’s theorem [4]

Im
[
ω 〈φ, ψ〉vi

]
+ Re

[〈(
0 ∇×
−∇× 0

)
ψ,ψ

〉

vi

]

︸ ︷︷ ︸
=Re[

∮
dA(E×H∗)·n]

−Re
[
iω 〈ψ,ψ〉vi

]
︸ ︷︷ ︸

=0

−Re
[
〈ξ, ψ〉vi

]
= 0, i = 1, 2, 3 . . . (28)

We can follow a similar procedure to obtain the imaginary part of Poynting’s theorem. Interestingly, it does not arise
simply from taking the imaginary part of Eq. (27).

B. Quantum control

In this subsection we show that our quadratic-constraint formulation of quantum control problems also represents
conservation laws. We start with a Hamiltonian of the form

H(t) = H0(t) + χ(t)Hc(t), (29)

where H0 is the non-controllable part of the Hamiltonian, Hc(t) is the controllable part, and χ(t) is the control
trajectory to be designed. The Schrodinger equation describes the temporal dynamics of the time-evolution operator
U(t, t0) (for some initial time t0), given by

i~
d

dt
U(t, t0) = H(t)U(t, t0). (30)

In this case, rather than source term, we have an initial condition at time t = t0. Using Eqs. (29) and (30), we have

[
i
d

dt
−H0(t)

]
U(t, t0)− χ(t)Hc(t)U(t, t0) = 0. (31)

where we have set ~ = 1. We assume the control parameter can take one of two values χ(t) ∈ {0, χc}, and denoting
the operator

L0 = i
d

dt
−H0, (32)

we have the constraint:

〈L0U(t, t0),L0U(t, t0)− χcHcU(t, t0)〉 = 0. (33)

Multiplying by H−1
c /χc and rearranging leaves us with the constraint:

〈
L0U(t, t0),

H−1
c

χc
L0U(t, t0)

〉
− 〈L0U(t, t0), U(t, t0)〉 = 0. (34)

Inserting the expression for L0 into the term on the right-hand side and rearranging gives

〈
d

dt
U(t, t0), U(t, t0)

〉
= i

〈
L0U(t, t0),

H−1
c

χc
L0U(t, t0)

〉
+ i
〈
U(t, t0), H†0U(t, t0)

〉
. (35)
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Taking the real part of this equation leaves us with:

d

dt
〈U(t, t0), U(t, t0)〉 = (36)

− 2

〈
L0U(t, t0), Im

[
H−1
c

χc

]
L0U(t, t0)

〉
+ 2 〈U(t, t0), Im [H0]U(t, t0)〉 , (37)

where “Im” denotes the anti-Hermitian part of the operator, and we have used the fact that Im
[
H†0

]
= −Im [H0]. In

the case of real-valued control parameter and Hermitian operators, i.e., Im
[
H−1
c /χc

]
= Im [H0] = 0, we have

d

dt
〈U(t, t0), U(t, t0)〉 = 0, (38)

which represents conservation of probability in a Hermitian (closed) system. In a non-Hermitian system, the term on
the right-hand side would simply give the probability loss due to the non-Hermiticity. Taking the imaginary part of
Eq. (35) leads to a “reactive” probability conservation, in analogy with reactive power conservation in electromag-
netism.

III. FORMING THE SDP BY LIFTING THE QCQP

In this section we provide the explicit transformations from the QCQP form of the problem to the SDP relaxation.
This procedure is well-known, cf. Ref. [5], but we also include the formulation here, for reproducibility. We start by
writing the QCQP:

maximize
ψ∈Cn

ψ†Aψ + Re
(
β†ψ

)

subject to [L(χ1)ψ − ξ]†Di [L(χ2)ψ − ξ] = 0, for all i ∈ Id,
[L(χi)ψ − ξ]

∣∣
i

= 0, for all i ∈ IPML,

(L(χi)ψ − ξ)† Di (L(χi)ψ − ξ) = 0, for all i ∈ IPML,

(39)

where Id is the set of indices in the designable domain, IPML is the set of indices in the PML, and Cn refers to the
set of n-dimensional complex-valued vectors. Before any transformations, we can compactify our notation:

maximize
ψ∈Cn

ψ†Aψ + Re
(
β†ψ

)

subject to ψ†Biψ + Re
(
v†iψ

)
= γi, for all i ∈ Iquad,

Re
[
u†i (L(χi)ψ)

]
= δi, for all i ∈ Ilin.

(40)

To arrive at Eq. (40), we use four steps. First, we combine the quadratic constraints of Eq. (39) into a single form,
differentiated only by index i, in the now larger set Iquad. Second, we form the linear constraints by multiplying over

a basis set of vectors ui. Third, we define δi = Re
(
u†i ξ
)

. Finally, we take the real parts of the quadratic and linear

constraint equations of Eq. (39), and we account for the imaginary parts by allowing for Di and ui to take unit entries
or their complex counterparts (i.e., multiplied by the imaginary unit).

The first step to simplifying Eq. (40) is to homogenize the problem, which means to transform the linear terms
in the QCQP to quadratic terms, so that all terms in Eq. (39) are either quadratic or scalar. We can do this by
introducing a new slack variable s into the objective and constraints, multiplying the linear terms. This slack variable
must have absolute value 1, but it can be positive or negative; a negative one value would be compensated in ψ by
multiplying by -1. With this new slack variable, the problem can be written

maximize
ψ∈Cn,|s|2=1

(
ψ
s

)†(A β
2

β†

2 0

)(
ψ
s

)

subject to

(
ψ
s

)†(Bi vi
2

v†i
2 0

)(
ψ
s

)
= γi, for all i ∈ Iquad,

(
ψ
s

)†(
0 L†(χi)ui

2
u†iL(χi)

2 0

)(
ψ
s

)
= δi, for all i ∈ Ilin,

(41)
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in which all of the expressions are either quadratic in the combined variable
(
ψ s

)T
, or scalar values. We can again

make the notation more compact, and write this problem as a homogenized, complex-valued QCQP:

maximize
x

x†A0x

subject to x†Aix = ai for all i.
(42)

To then convert this to a complex-valued SDP, we simply take the trace of each expression, which does not modify
any values, then use the invariance of trace under cyclic permutations to form the product xx†, which we define to
be a new positive semidefinite, rank-one matrix X. The equivalent problem for this matrix variable is

maximize
X

Tr (A0X)

subject to Tr(AiX) = ai for all i,

X ≥ 0,

rankX = 1.

(43)

We can relax this problem by dropping the rank-one constraint, leaving the standard-form (complex-valued) SDP:

maximize
X

Tr (A0X)

subject to Tr(AiX) = ai for all i,

X ≥ 0.

(44)

In this form, the problem can be solved in any SDP solver. (If the solver does not accept complex-valued matrices, it
is simple to double all dimensions and separate the real and imaginary parts of the vectors and matrices.)

IV. GRAPH THEORY FOR SEMIDEFINITE PROGRAMMING

Graphs distill real-world relations into abstract lines and vertices, for social networks in sociology, genetic networks in
biology, communication networks in computer science, lattice structures in physics, and molecular chains in chemistry.
Complex dynamics can simplify when occurring on graphs with special structure. In particular, chordal graphs
represent a class of connections where many hard problems can be easily solved, including graph coloring, clique
finding, and matrix factorization [6]. In this section, we review basics of graphs and chordal graphs, as well as
theorems that foreground chordal graphs in sparse semidefinite programming.

A graph comprises a set of vertices V = {v1, v2, ..., vn} and their connecting edges E ⊆ V × V . The vertices and
edges uniquely define the graph: G(V,E). We consider undirectional graph whose edges are unordered pairs, denoted
by curly brackets such as {vi, vj}. If a series of edges leads one vertex back to itself, then these edges form a cycle.
Two vertices vi and vj are adjacent if there is an edge between them, i.e., if {vi, vj} ∈ E. Vertices that are all adjacent
to each other form a clique. A clique can expand upon admitting new vertices that are adjacent to all its existing
members. If no such new vertices exist, the clique is then called a maximal clique of the graph.

Many large problems can be simplified if their graph is a chordal. A chordal graph is a graph in which every cycle
of length four and greater has a chord (an edge between nonconsecutive vertices of the cycle). In other words, if you
trace a cycle of four (or more) edges without finding a shortcut, then the graph is not a chordal graph. Any graph
can be made chordal by adding extra edges. In the extreme case, supplying every possible edges guarantees a chordal
graph, but then there can be no problem-size reduction. The art is to add as few edges as possible to make a graph
chordal. This procedure is called chordal completion, often implemented via heuristic algorithms [7].

Sparsity in matrices map to specific graph representations of the matrix data. Zeros in a symmetric matrix X are
missing edges in the corresponding undirected graph G(V,E): {vi, vj} /∈ E ⇐⇒ Xij = Xji = 0. Two groups of
symmetric matrices X are of particular interest in sparse semidefinite programming. The first are matrices that are
positive semidefinite and sparse, with sparsity pattern given by the graph G(V,E):

Sn+(E, 0) = {X ∈ Sn+ | Xij = Xji = 0 if (i, j) 6= E}, (45)

where Sn+ (without argument) refers to the set of positive definite symmetric matrices. The second group consists
of matrices that are not necessarily positive semidefinite or sparse but can be “completed” into positive semidefinite
matrices. To motivate this, consider an inner product Tr(AX) between the symmetric matrix X and a sparse symmetric
matrix A whose sparsity is given by the graph G(V,E). The inner product multiplies matrices element-wise, so only
the elements in X that correspond to the edges in the graph G(V,E) are involved in the computation of the inner
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product. If the rest of the elements in X can be altered to turn X into a positive semidefinite matrix, say M, then we
say X belongs to a group of completable partial symmetric matrices:

Sn+(E, ?) = {X ∈ Sn | ∃M ≥ 0,Mij = Xij ∀(i, j) ∈ E} (46)

The two matrix spaces, Sn+(E, 0) and Sn+(E, ?), are both convex cones and, in fact, are duals of each other [6]. Together,
they constitute the basic matrix spaces in sparse semidefinite programming.

Crucially, if the graph G(E, V ) is a chordal graph, both types of matrices above can be decomposed into smaller
matrices defined on the maximal cliques of the graph, {C1, C2, ..., Cl}. Aiding this decomposition is a projection
matrix Tl that projects a matrix X into its principle submatrix Xl = TlXT>l , and reads (Tl)ij = 1 if Cl(i) = j
and zero otherwise, where Cl(i) is the i-th vertex in Cl. If the matrix X is positive semidefinite completable, i.e.,
X ∈ Sn+(E, ?), then all the submatrices Xl are all positive semidefinite, as dictated by Grone’s theorem [8]:

X ∈ Sn+(E, ?) ⇐⇒ Xl = TlXT>l ∈ S|Cl|
+ . (47)

If the matrix X is sparse positive semidefinite, i.e., X ∈ Sn+(E, 0), then all the submatrices Xl are positive semidefinite
and uniquely expand the matrix X, as dictated by Agler’s theorem [9]:

X ∈ Sn+(E, 0) ⇐⇒ X =

p∑

l=1

T>l XlTl, Xl ∈ S|Cl|
+ . (48)

Agler’s theorem in Eq. (48) allows one to decompose sparse semidefinite programs in their dual forms, where the
matrix variable X directly inherits the sparsity of the problem; Grone’s theorem in Eq. (47) allows one to decompose
sparse semidefinite programs in their primal forms, where the the matrix variable X does not inherit the sparsity but
is multiplied by matrices that do. We discuss this second scenario in the next section.

V. FAST SEMIDEFINITE PROGRAMMING ON CHORDAL GRAPHS

Semidefinite programs are challenging to solve for large-dimensional problems, unless there is sparsity to be lever-
aged. Sparsity mainly accelerates two operations in the semidefinite programming in Eq. (44): multiplying matrix X
by matrix Ai, and verifying the semidefinite constraint, X ≥ 0, is satisfied. These two operations are the numerical
bottleneck for most semidefinite programming algorithms [5, 10], both costing at least O(n3) per iteration for an
n-dimensional problem. To accelerate these two operations, one needs to consider the aggregate sparsity pattern of
the semidefinite program in Eq. (44), which are the places where all the objective and constraint matrices, Ai, are
zero. The aggregate sparsity pattern is given by the sparsity pattern of the L†L matrix in the QCQP in Eq. (39),
which is shown as the black and red squares in Fig. 1(b) in the main text for a number scenarios. Most sparsity can
accelerate matrix-matrix multiplications by multiplying only the nonzero entries. On the other hand, only a special
type of aggregated sparsity based on chordal graphs can accelerate the verification of the semidefinite constraint,
which we explain below.

The major bottleneck of large-scale semidefinite programming is the verification of its semidefinite constraint, which
is resolvable if the underlying sparsity pattern corresponds to a chordal graph [6]. There is a unique mapping between
sparsity pattern of symmetric matrices and undirectional graphs: an nonzero (i, j) entry of the former maps to a edge
between the i and j vertices of the latter. (See Section IV for a quick review on graph theories.) A chordal graph, in
particular, is a graph where all cycles of four or more vertices have a chord. As shown in the Fig. 1(a) of the main text,
the sparsity pattern of the L†L operator in our photonic problem does not necessarily correspond to a chordal graph
but it can be made into one by adding extra chords (the green lines in Fig. 1(a)). Chordal graph is desirable because
it allows one to distribute certain complex operations into different “cliques”, a set of vertices in the graph that are
all connected to each other (as in Fig. 1(a)). In particular, if the aggregate sparsity of the semidefinite program in
Eq. (44) can be completed into a chordal graph, then Grone’s theorem in Eq. (47) shows its semidefinite constraint
X ≥ 0 can be replaced by “smaller” semidefinite constraints on each of its cliques: X[Ij , Ij ] ≥ 0, where Ij denoting
the indices for the jth clique. The optimization problem of Eq. (44) becomes

maximize
X∈Sn

Tr(A0X)

subject to Tr(AiX) = ai, for i = 1, 2, ...,m,

X[Ij , Ij ] ≥ 0, for j = 1, 2, ..., p,

(49)

where p to denotes the total number of cliques in the chordal graph. The only difference between the decomposed
semidefinite program and the original semidefinite program is the semidefinite constraints are now applied to smaller
cliques. As the semidefinite constraint is the main computational bottleneck that increases as O(n3) with the matrix
size n, breaking a large X into many smaller ones in Eq. (49) allows us to significantly accelerate the SDP computations.
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VI. IMPLEMENTATION OF THE MAJORIZATION-MINIMIZATION ALGORITHM

To obtain a rank-1 solution to the QCQP, a proxy function R(X) for rank is incorporated into the objective as a
penalty term to be minimized:

maximize
X

Tr(AX)− γR(X)

subject to Tr(BiX) = bi, for i = 1, 2, ...,m,

X ≥ 0.

(50)

We successfully generated rank-1 solutions to Eq. (50), following the methods introduced by Liu, Sun, and Tsang in
Ref. [11], producing designs from the modified-SDP formulation. Here we summarize the key steps of Ref. [11] that
we implemented.

The first step is to find an approximate representation of the rank. One way to write the rank is to count the
number of nonzero singular values, which is given by

rank(X) =
∑

i

H(σi(X)) (51)

where σi(X) is the ith singular value of X and H(x) is the Heaviside step function, equal to 1 if x > 0 and 0 if x = 0
for x ≥ 0. H(x) is non-differentiable and therefore cannot be used in gradient-based optimization, but it can be
approximated by the smooth, differentiable function

θ(x, ε) = 1− e−x/ε (52)

with ε > 0, noting that limε→0 θ(x, ε) = H(x). Defining

Θ(X, ε) =
∑

i

θ(σi(X), ε) (53)

the goal is to solve Eq. (50) with R(X) = Θ(X, ε). The non-differentiability of the rank function has been removed,
but Θ(X, ε) is still concave.

A concave function has a special property: it is bounded above everywhere by any tangent plane intersecting the
function at one point. In other words, the value of the function at a given point (matrix), plus a term given by the
inner product gradient of the function and the difference between the two points, will always be an upper bound to
objective function itself. In this case the approximate rank function Θ has (elementwise) gradient

∇Θ(X, ε) =
1

ε
U



e−σ1(X)/ε

e−σ2(X)/ε

. . .


U†, (54)

where UΣU† is the singular value decomposition of X (equivalent to its eigendecomposition, since X is positive
semidefinite). Then, for any feasible matrix Xk obtained at the kth iteration,

Θ(X, ε) ≤ Θ(Xk, ε) + 〈∇Θ(Xk, ε), X− Xk〉 (55)

The first term on the right-hand side of Eq. (55) is constant with respect to X, while the second term is linear. Hence
minimizing the second term is a convex optimization problem, and will result in a minimization of Eq. (55), which is
itself an upper bound on rank. We define the objective to minimize as R:

R(X) = 〈∇Θ(Xk, ε), X〉 (56)

Thus by iteratively solving convex optimization problems, we can continuously push down an upper bound on the
rank, and thereby the rank itself, ideally near 1. This is an example of a “majorization–minimization” algorithm [12].
To select an initial point for the optimization, we solve Eq. (50) with R(X) = Tr(X). For positive-semidefinite
matrices, the trace is a well-known proxy for rank(X). Additionally, since Θ(X, ε) becomes highly concave as ε→ 0,
which is liable to cause computational difficulty, we execute the MM algorithm iteratively over decreasing values of
ε until convergence. Putting everything together, with convergence tolerances δ1, δ2, δ3, we implement the following
process:
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1. Define arbitrary initial γ.

2. Solve Eq. (50) with R(X) = Tr(X) to obtain an initial Xk.

3. Define arbitrary initial ε.

4. Solve Eq. (50) withR(X) = 〈∇Θ(Xk, ε), X〉 for the optimal solution X = Xk+1. Repeat until ‖Xk+1 − Xk‖F /‖Xk‖F <
δ1.

5. Define the output of Step 4 as Xl. Decrease ε by an arbitrary factor α and repeat Step 4. Repeat until
‖Xl+1 − Xl‖l/‖Xl‖F < δ2.

6. Repeat steps 2-5, increasing γ by an arbitrary factor β, until σ1(X)/σ2(X) > δ3.

We make simple (non-optimized) choices γ = 10−7, δ1 = 10−3, δ2 = 10−3, δ3 = 105, ε = 0.5, α = 2, and β = 1.5.

VII. METALENS BOUND CALCULATION

A. Formulation of the target function

We consider a two-dimensional scattering problem for a TE-polarized electric field (such that it can be treated as
a scalar electric field) and we seek to optimize the intensity of the field at a target point xtar. We denote the field
at the target point as Etar = E(xtar), and calculate a bound on the maximal value of the quantity |Etar|2, given a
narrow design region of length d in which each point in can be vacuum or a material with susceptibility χ1 (see Fig.
2(a) of the main text). We can express the field at the target point as

Etar = Ei(xtar) + Es(xtar), (57)

where Ei(xtar) is the incident field at the target point, i.e., in the absence of material, and Es(xtar) is the scattered
field at the target point. Note, that the background field solves the background-L operator, i.e., L0Ei = iωJ .
The target point is set at a distance f from the design region, such that the numerical aperture (given by
NA = sin[arctan[(d/2)/f ]]) is set to NA = 0.9.

We can express the scattered field at the target point using a Green’s function

Es(xtar) =

∫
Γ0(xtar, x)P (x)dx, (58)

where P (x) is the polarization currents in the design material, given by

P (x) = χ(x)E(x) =
1

ω2
(L0E − iωJ(x)) =

1

ω2
(L0E − L0Ei). (59)

For clarity of notation, we will denote the integration as an operator Γtar = ω−2
∫

Γ0 (xtar, x) dx (numerically, this a
row from the matrix representing the Greens’ function).

A natural way to proceed is to substitute Eqs. (58) and (59) into Eq. (57) and squaring:

|Etar|2 = |Ei (xtar) + Γtar (L0E − L0Ei)|2 (60)

= |Ei (xtar)|2 + |Γtar (L0E − L0Ei)|2 + 2Re
[
E†i (xtar) Γtar (L0E − L0Ei)

]
. (61)

However, in this case, the target function has a matrix of the form Γ†tarΓtar, which is not sparse, and we will not be
able to exploit the sparse structure of the problem in the optimization.

An alternative formulation of the target function, which preserves sparsity, is given by

|Etar| = max
θ

Re
[
Etare

iθ
]
, (62)

where θ is an auxiliary angle. After the optimization procedure, we can square the result to obtain |Etar|2. Explicitly,
we have

|Etar| = max
θ

Re
[
Ei (xtar) e

iθ + Γtar (xtar, x) (L0E − L0Ei) e
iθ
]
, (63)
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which is linear in the term Γtar and preserves the sparse nature of the problem. Together with Eq. (17), this forms
the QCQP to be solved.

Fig. 1 shows the results of the optimization process for different values of θ, from which the maximum can be
selected. While this approach requires multiple optimizations (sweeping over different values of θ), the speed-up
provided by the sparseness of this form is significantly faster compared to non-sparse formulations, and enables the
optimization over large domains (see Fig. 2(d) in the main text).

d = 60λ

d = 20λ

d = 1.2λ

FIG. 1. Optimization results for the field intensity focused by a metalens of different lengths (d), using an auxiliary angle θ
(see Eq. (62)).

B. Scattered-field formulation

The target function in Eq. (63), as well as the constraints from Eq. (17) are quadratic form in the total field (E).
Alternatively, the QCQP can be written where the quadratic form is of the scattered field Es (given by Es = E−Ei).
Using Eqs. (58) and (59) we can rewrite the target function in terms of Es:

|Etar|2 = |Ei (xtar) + ΓtarL0Es|2 . (64)

Similarly, we can express the constraints from Eq. (17) in terms of scattered field:

〈
(L0 (Ei + Es)− iωJ) ,

χ−1
c

ω2
(L0 (Ei + Es)− iωJ)

〉

vi

(65)

− 〈L0 (Ei + Es) , (Ei + Es)〉vi − iω 〈J, (Ei + Es)〉vi = 0, i = 1, 2, 3 . . .. (66)

Using iωJ = L0Ei and rearranging, we are left with:

〈
L0Es,

χ−1
c

ω2
L0Es

〉

vi

− 〈L0Es, Es〉vi − 〈L0Es, Ei〉vi = 0, i = 1, 2, 3 . . .. (67)

Together, the target function (Eq. (64)) and the constraints (Eq. (67)) form a QCQP in the scattered field Es.

C. Unitary bound

In this section, we derive a bound for the efficiency of a metalens of length d based on the unitarity of the scattering
matrix describing the system. In the most general case, we can write the field at the target point using Green’s
functions:

Etar =

∫ d

0

ΓEEzz (xt, x)ξEz (x)dx+

∫ d

0

ΓEHzy (xt, x)ξHy (x)dx, (68)
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where ΓEEzz and ΓEHzy are the electric and magnetic Green’s functions, respectively, and ξEz and ξHy represent electric
and magnetic current sources, respectively. After discretizing the domain, we have the matrix form:

Etar =
(
ΓEEzz ΓEHzy

)
︸ ︷︷ ︸

Γ

(
ξEz
ξHy

)

︸ ︷︷ ︸
ξ

h, (69)

where h is the discretization step size, and squaring the field at the target point, leaves us with:

|Etar|2 = ξ†Γ†Γξh2. (70)

Assuming the incident field is a plane wave with amplitude 1, we can normalize the current distributions:

ξ†ξh =

∫
|n× E|2 dx+

∫
|n×H|2 dx = 2d. (71)

We can now write the intensity maximization problem:

max ξ†Γ†Γξh2

s.t. ξ†ξ =
2d

h

(72)

In order to solve the equation above, we define a normalized current ζ = ξ
√
h/(2d), such that the problem can be

rewritten in the following form:

max ζ†
(
2dΓ†Γh

)
ζ

s.t. ζ†ζ = 1
(73)

The optimization problem is now in the form of a Rayleigh quotient, where the maximum of the target function is
given by the largest eigenvalue of 2dΓ†Γh. The results of this bound calculation are shown in Fig. 2(c) of the main
text.

VIII. COMPATIBILITY WITH FEM SOLVERS

The formulation we present here utilizes the differential form of the physical equation, which is used in many
commercially available solvers. These can be both finite difference (FDFD) solvers, as well as finite element (FEM)
solvers. Here, we demonstrate how an FEM electromagnetic solver (COMSOL) can be used to calculate a bound in
a simple photonic problem. We model a 2D system, with a geometry shown in Fig. 2(a). We set periodic boundary
conditions for the top and bottom boundaries and simulate perfectly matched layers (PML) on the sides on the
structure. Fig. 2 After setting current sources, we export the matrix and vector describing the linear system as
constructed by the software. We choose the point that comprise a ‘design’ region (see Fig. 2(b) for an example) and
calculate bounds for the maximal value of the target function

f(E) =

∫

Vdes

|E(x)|2dx, (74)

i.e., integrated field intensity over the entire design region Vdes. In this example, the material has a refractive index
of n =

√
12, and the optical wavelength was set to λ = 1.55µm. For comparison, we repeat the calculation with a

finite-time frequency domain solver (FDFD). Fig. 2(c) shows the calculated bounds as a function of design region
length. We see that the FDFD and FEM based bound calculations agree, showing a linear dependence of the target
function with the design region length.

IX. DISCUSSION OF RELATED WORK

Ref. [13] is a delightful review of approaches to inverse design and performance bounds, especially techniques that
had been developed by early 2021. Yet Ref. [13] goes significantly further, offering a unified, generalized mathematical
framework for these approaches. Here we discuss the bound approach, newly developed in Ref. [13], that is close to
the approach we propose in the main text.
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FIG. 2. (a) COMSOL-generated mesh, and a magnified view of the degrees of freedom being solved for. (b) Calculated
bound as a function of design region length, using differential operators from FEM (red) and FDFD (blue) solvers. Simulation
results of an unstructured dielectric (using both solvers) are shown for reference.

The starting point of Ref. [13] is a physical design problem written in the form

(A0 + diag (θ)) z = b, (75)

where A0 is a design-independent differential operator (plus, possibly, the identity matrix scaled by background
constants), diag(θ) is a diagonal matrix whose diagonal elements are the designable degrees of freedom, z is the field
of interest, and b comprises the sources.

The matrices and vectors in the physical design equation are all assumed to be real-valued. From this assumption,
they derive “power inequalities” of the form

(A0z − b)T D (A0z − b) ≤ zTDz, (76)

which is equivalent to the power-conservation bounds of [14, 15], when all of the equations are real-valued.
Yet in nearly all cases of interest, the fields and design variables cannot be trivially assumed as real-valued. Complex

values are of course built into quantum dynamics. In electromagnetism, open boundaries require complex-valued
fields (e.g., through perfectly matched layers). Plasmonic structures require loss. Perhaps the one exception is the
calculation of modes of closed, periodic systems (e.g. photonic crystals), for eigenstate properties. For any scattering
problem with a source, however, the power from the source must be dissipated in either the material or into far-field
radiation, with complex-valued fields as a result.

The formulation of Ref. [13] does not lead to a design QCQP when the fields are complex-valued. In order to
transform the original, complex-valued physical design equation to a real-valued form of the type of Eq. (75), one
must perform a standard doubling of the dimensions of the vectors and matrices, separating the real and imaginary
parts of all variables involved. (See Ref. [16] for detailed descriptions of these steps.) This leads to a vector θ of design
variables that is twice as large as the number of degrees of freedom, and within which the first and second halves
of the vector should be equal. Such a constraint is a pain to enforce, however (it possibly could be enforced by the
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methods of Ref. [17]), and instead is dropped in [13, 16]. Hence, that approach leads to a relaxed QCQP that can be
used for bounds, but not a QCQP formulation of the design problem, as proposed in the main text.
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