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ABSTRACT: We consider the space of all causal bulk materials, 2D
materials, and metamaterials for maximum near-field radiative heat
transfer (RHT) between planar structures. Causality constrains the
bandwidth over which plasmonic response can occur, explaining two
key traits in ideal materials: small background permittivities (minimal
high-energy transitions in 2D materials) and Drude-like free-carrier
response, which together optimally yield 10× enhancements beyond
the theoretical state-of-the-art. We identify transparent conducting
oxides, III-nitrides, and graphene as materials that should offer nearly
ideal near-field RHT rates, if doped to exhibit plasmonic resonances at
what we term “near-field Wien frequencies”. Deep-subwavelength patterning can provide marginal further gains at the expense of
extremely small feature sizes. Optimal materials have moderate loss rates and plasmonic response at 19 μm for 300 K temperature,
suggesting a new opportunity for plasmonics at mid- to far-infrared wavelengths, with low carrier concentrations and no requirement
to minimize loss.
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In this Article, we identify optimal materials and metamate-
rials for maximum near-field radiative heat transfer (RHT)

between large-area planar bodies. We optimize over the space of
all causality-allowed material-permittivity or conductivity
distributions and discover the possibility for heat-transfer
coefficients at the level of 2 × 105 W/(m2K) at 10 nm
separations (and 300 K temperature), more than 10× higher
than the current theoretical state-of-the-art.1,2 These bounds
enable identification of three key characteristics of optimal
materials: small background permittivities (or, for 2D materials,
minimal high-energy electronic transitions), moderate loss rates,
and a single-pole Drude-like response with ≈19 μm effective
surface-plasmon wavelength. These three criteria are not all
satisfied by any of the typical bulk materials proposed for near-
field RHT; for example, doped silicon3−5 has a large background
permittivity, while polar dielectrics6,7 have a non-Drude-like,
highly dispersive narrow-band response. Among bulk materials,
we identify transparent conducting oxides (TCOs) and III-
nitrides at low to medium carrier concentrations (≈1018 cm−3)
as particularly promising material classes, with the capability to
exhibit record RHT rates and to approach within a factor of 2 of
the causality-based bounds. Among metamaterials, we show that
hyperbolic effective-medium response is nonideal and that,
although patterned-cylindrical-hole structures can enable slight
enhancements to RHT response, they may require unrealistic
feature sizes to do so. We use a gap-surface-mode analysis to
provide physical intuition supporting the ideal material
characteristics, and we derive a “near-field Wien’s Law” to
prescribe the optimal resonance frequencies at any temperature.

Because near-field local densities of states cannot scale with the
square of frequency, ∼ω2, like far-field plane-wave states do, the
optimal near-field resonance frequencies are significantly red-
shifted relative to the classical Wien frequencies, yielding
optimal HTC rates of (760 W/m2 K2)T as a function of
temperature T. Interestingly, the optimal causal 2D materials
can have slightly superior HTCs to their bulk counterparts, and
realistic 2D plasmonic materials at low carrier concentrations or
Fermi levels and moderate loss rates also offer the prospect for
record-level near-field RHT rates. From a materials perspective,
these results offer a new opportunity for plasmonics: instead of
pushing for near-zero loss and the highest possible carrier
concentrations to exhibit near-visible-frequency resonances,8

optimal materials have moderate loss rates and support mid- to
far-infrared resonances arising from low to moderate carrier
concentrations. More broadly, these optimal characteristics we
present can provide guidelines for material choices and designs
for a wide range of thermal applications in the near field, such as
thermophotovoltaics,9−13 heat-assisted magnetic recording,14,15

nanolithography,16 and thermal management.17−20
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In recent years, near-field RHT rates significantly higher than
the blackbody limit have been measured between SiO2, SiC,
gold, and doped Si in pioneering experiments,1,10,21−26 inspiring
a search for the best material and structure combinations for
near-field RHT.27−33 Out of practical materials, polar dielectrics
seem sensible for their strong surface phonon polaritonic
resonances in the infrared. SiO2 plates, in particular, could in
theory yield 300 K HTC of about 2 × 104 W/(m2K) at 10 nm
separations.1 Plasmonic materials and doped semiconductors,
whose strong surface resonances play a large role in near-field
RHT, have also been explored.23,24,34 Advanced material growth
and nanofabrication techniques have enabled wavelength- to
deep-subwavelength-scale patterning of materials.22,35 Both
hyperbolic metamaterials and in-plane structured metamaterials
have been theoretically shown to offer RHT values larger than
those of some bulk materials.4,5,30,36,37 Rigorous-coupled-wave-
analysis computations have shown that, at 300 K, air-hole
patterned doped Si at a carrier concentration of n = 1020 cm−3

can offer a comparable HTC value to that from SiO2 at 10 nm
and even better relative values for larger separations up to 1000
nm.5

A fundamental question yet to be answered is which material
properties enable maximal HTC between extended planar
structures at any given temperature. Specific instances of this
question have been explored theoretically and computation-
ally.4,37−40 References 38 and 41 provide modal analyses of gap
surface waves, though without intuition about integrated
broadband radiative response and optimal material properties.
Numerical optimizations for single-pole permittivity lineshapes
of materials have been done,39,40 but without contextualization
in the broader landscape of material possibilities and without
guidance relating the optimal single-pole parameters to
temperatures, gap distances, and related system parameters.
Moreover, none of these works consider optimality criteria of
2D materials. More recent work on analytical bounds and large-
scale optimization for near-field RHT32 have shown that there
may be little benefit to improving near-field RHT between
extended objects via structuring and that, for a given material,
planar structures may be nearly globally optimal. These results
suggest that uncovering the optimal material may be the key
lever for significant enhancements of near-field RHT. These
works help us better delineate our questions: what is the best
material for near-field RHT out of all causality-allowed
materials, including multiple-pole bulk materials and 2D
materials? Can we theoretically explain the optimal parameters?
How do the optimal parameters vary with temperature?
We start by doing numerical optimizations in search of the

optimal linear permittivity for bulk materials and 2D
conductivity for 2D materials at 300 K, with passivity as the
only constraint. The results provide not only the largest possible
HTC, but also intuitions of optimal material characteristics,
which for both bulk and 2D materials, entails that small-
background-permittivity single-Drude-pole plasmonic materials
withmoderate loss could provide the ideal lineshape and that the
ideal frequency of peak spectral contribution is about 0.067 eV.
Through gap surface resonance modal analyses and rigorous
computations of HTC, the temperature-independent optimal
material properties can be intuitively explained. As for the
optimal resonance frequency (frequency of peak spectral
contribution in the case of 2D materials), which varies with
the operating temperature, we apply an analysis similar to that
leading to Wien’s Law for blackbodies and derive near-field
versions that account for the spectral profiles of LDOS. These

near-field laws define the optimal resonance frequencies as a
function of temperature for bulk materials, with a linear scaling
factor significantly smaller than that of a blackbody. Optimal
HTC also scales linearly with temperature, different from the
cubic dependence in the far-field case. Furthermore, we study
the effects of deep-subwavelength patterning under the
framework of effective medium theory (EMT) and suggest the
optimal schemes and parameters for nanostructuring. Large
reductions in carrier concentrations can be provided by in-plane
patterning of cylindrical air-holes, yielding enhancement in
HTC for originally suboptimal materials. However, originally
optimal materials still provide good, if not better, HTC values
without nanopatterning, in which sense deep-subwavelength
patterning only makes sense if one had to begin with highly
suboptimal materials and feature sizes well below the gap
distance can be fabricated. Our optimizations over bulk
materials and metamaterials effectively encompass thin films
as well: at thicknesses larger than the skin depth, they show bulk-
like response, and at thicknesses smaller than the skin depth,
they show nearly identical response to multilayer hyperbolic
metamaterials.42 Similar optimizations over all causality-
consistent 2D conductivity for 2D materials present findings
that are excitingly similar to those of bulk materials and can be
explained likewise. Despite quite different gap surface resonance
modal dispersions for bulk and 2D materials in the plane−plane
configuration, the optimal 2D material is the direct 2D analog of
the optimal bulk material, as it has a single Drude pole, a
moderate loss rate, and minimal higher-energy electronic
transitions. Among common materials, we predict that TCOs,
III-nitrides with small background permittivities, bulk or 2D, as
well as other 2D-doped semiconductors and 2D semimetals with
predominantly single-Drude-pole 2D conductivity, once
synthesized and engineered to possess low to medium carrier
concentrations and moderate loss levels, could potentially
approach the optimal permittivity or the optimal 2D
conductivity and yield HTC 5× better than SiO2 for a wide
range of gap separations.

■ IDEAL CAUSALITY-ALLOWED ϵ(ω) FOR MAXIMUM
HTC

In this section, we formulate the optimization of heat-transfer
coefficients (HTCs) over all causality-allowed material
permittivities ϵ(ω). We start with the standard expressions for
computing HTC via modal-photon-exchange functions and list
common Drude and Drude−Lorentz permittivity lineshapes. In
what follows, we describe the Kramers−Kronig-based repre-
sentation of all causality-consistent permittivities, and we show
that numerical optimizations identify key material character-
istics that are optimal for near-field RHT. We concentrate on
HTC in this section to isolate the effects of a single temperature,
which makes it useful for comparisons across the literature, and
as discussed in a later section, our results translate seamlessly to
RHT between two bodies with arbitrary temperature differ-
ences.

■ HTC BETWEEN PLANAR STRUCTURES

The canonical configuration of extended near-field RHT
consists of two parallel half-spaces (or two parallel planar
structures for 2D materials) separated by a vacuum gap with
thickness d much smaller than the characteristic thermally
excited wavelength.2,16,43 For materials with translation and
rotation symmetry in the plane parallel to the surfaces (isotropic
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or anisotropic out of plane), HTC is calculated with a double-
integration over all plane-wave channels at frequency ω and
surface-parallel wavenumber β. The infinitesimal temperature
difference between the two bodies manifests in a temperature
derivative of the Planck distribution Θ(ω, T), where

T e( , ) /( 1)k T/ Bω ωΘ = ℏ −ωℏ and kB is the Boltzmann
constant. Then the HTC is given by44

T
T
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for any polarization. The modal photon exchange rate ξ(ω, β) is
proportional to the transmission probability through each plane-
wave channel; for evanescent waves, it is given by
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The contributions from propagating waves are not included in
our calculations of near-field RHT throughout, as they are
negligible for the highly subwavelength gap separations of
interest; moreover, this allows us to isolate the relevant near-
field physics. For isotropic bulk materials, the reflection
coefficients r0i from vacuum gap to medium i = 1,2 are
determined by the permittivity ϵ(ω) and the z-components of
the wavevector in vacuum, k0,z and that in the material, kz, given
by27

r
k k

k ki
z z

z z
0

0,

0,
=

ϵ −
ϵ + (3)

for TM polarization, which is the dominant near-field channel
(the TE-polarized reflection coefficient is given by a similar
expression27). Hence the ϵ(ω) enters the HTC calculation of eq
1 from the reflectivity of eq 3, mediated by the quantity S(ω)
that we refer to as the “spectral photon exchange”.

■ COMMON PERMITTIVITY LINESHAPES
Metals, doped semiconductors, and polar dielectrics are all
materials of interest for large near-field RHT. Their permittivity
lineshapes arise from electronic transitions (intraband and
interband), optical phonons, and related processes determining
optical properties for most materials.45,46

The simplest Drude lineshape can often describe intraband
transitions and is given by46,47

i
( ) 1b

p
2

2ω
ω

ω ωγ
ϵ = ϵ −

+

i

k

jjjjjj
y

{

zzzzzz
(4)

The background permittivity ϵb arises from electronic
transitions with frequencies much higher than thermally
interesting ones. (Whether it multiplies the second term or
not amounts to a simple redefinition of the parameter ωp.) The
plasma frequency,ωp, the amplitude or strength of the oscillator,
is a measure of free-carrier density n (generalized to incorporate
background permittivity and effective mass):

ne
mp

2
2

b eff
ω =

ϵ (5)

where meff is the free-carrier effective mass. From electron
scattering rate γ, one can define a dimensionless loss rate g = γ/
ωp.

A Drude−Lorentz lineshape, which describes, for example,
interband transitions and optical-phonon contributions, is given
by6,45

i
( ) 1b

a
2

2
0
2ω

ω
ω ω ωγ

ϵ = ϵ −
− +

i

k
jjjjj

y

{
zzzzz (6)

where the frequencyω0 is the band-to-band transition frequency
(or transverse-optical-phonon frequency), and the oscillator
strength is now denoted by ωa. Knowledge of the ratio of the
static dielectric constant ϵs to ϵb specifies the ratioωa

2/ω0
2, which

follows from eq 6 and is known as the Lyddane−Sachs−Teller
relation.48

■ NUMERICAL OPTIMIZATION OF ϵ(ω) FOR HTC AT
300 K

Any causal physical material permittivity must satisfy the
Kramers−Kronig relations49 that relate the real part Re ϵ at
one frequencyω to an integral of the imaginary part Im ϵ (or vice
versa) over all frequencies (ω′):

Re ( ) 1
2 Im ( )

( )
d

0 2 2∫ω
π

ω ω
ω ω

ωϵ = + ′ ϵ ′
′ −

′
∞

(7)

where the integral is a principal-value integral. Notice the
suggestive form of the integrand of eq 7, which is similar to a
lossless Drude−Lorentz oscillator with an integration variable
ω′ as the effective transition frequency of a continuum of
oscillators. As we show in the SM, this correspondence can be
formalized: for a discretization of the Kramers−Kronig relation
into local basis functions, one can write the permittivity as a sum
of Drude−Lorentz oscillators with infinitesimal loss rates:

i
( ) 1

i

N
i

i i1

a,
2

2
0,
2∑ω

ω
ω ω ωγ

ϵ = −
− += (8)

where γi → 0 from above. For anisotropic materials, one could
write eq 8 for each of the components of the permittivity tensor,
with possible further constraints, and optimize over the resulting
permittivity the same way we describe here for scalar
permittivity. Anisotropy from two types of metamaterial
patterning is studied in the section “Deep-Subwavelength,
Possibly Anisotropic, Structured Metamaterials”, where we find
that the best anisotropic metamaterial cannot outperform the
optimal isotropic material, suggesting that anisotropy is of
limited value. For scalar permittivity, such a representation is
completely general and applies for arbitrarily high loss levels in a
material. (Lossless Drude−Lorentz oscillators have δ-function
imaginary parts with arbitrarily large amplitudes, which can be
derived from eq 8 in the γi → 0 limit, cf. SM.) A similar
representation can be derived via a Mittag−Leffler expansion,
albeit with possibly lossy oscillators and without consideration
of higher-order poles.50,51 In some scenarios, one may use
alternative oscillator types (e.g., Gauss−Lorentz52) which, for a
small number of oscillators, may be a better approximation of
certain dielectric functions. But ultimately any such permittivity
must be representable by eq 8.
Optimizing HTC over all causality-allowed permittivities can

then be done by optimizing eq 1 over all possible oscillator
strengths ωa,i and frequencies ω0,i (with infinitesimal loss rates
γi) for the two materials involved. For a single material, we
optimize over these parameters by choosing a large number
(hundreds) of oscillator frequenciesω0,i to cover the full relevant
bandwidth. HTC is not a convex function of the parameters, and
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there will generically be many local optima. One might consider
a global optimization algorithm,53 but hundreds of free
parameters prohibit any hope of convergence in such a large
design space. Instead, we perform gradient-based local
optimizations, which we run many times with different initial
conditions, optimization parameters, and so on, and see
consistent convergence to similar optimal HTC values and
lineshapes, which suggests that we are approaching globally
optimal values. Our gradient-descent-based local optimizations
of eq 1 use hundreds of oscillators with frequencies ω0,i spaced
by 0.001 eV, and semianalytical expressions of the HTC
gradients with respect to all parameters (cf. SM). In
experimental optimizations, γi = 0.004 eV was found to offer
the best optimal HTC levels, and we choose precisely this value
for our optimizations (cf. SM). We allowed for the possibility of
different materials for the two bodies, but the optimizations
always converged on identical permittivity profiles, which is
sensible, as alignment of resonant features likely enables
maximum photon tunneling probabilities from one body to
the other, and similar conclusion is also obtained in ref 40. To
avoid poor-quality local optima, we typically run the
optimizations in two stages: first, with a smaller number of
parameters starting from a random initial guess, and then using
“successive refinement”54 to polish the optimal solution with a
very large number of parameters (cf. SM for more details). The
optimizations typically converge within a few hundred
iterations. Figure 1 depicts the initial and final permittivity
distributions of a 400-oscillator optimization, with a random
initial permittivity profile (blue) that converges to a smooth
Drude-dominant profile by the end of the optimization. The
ideal lineshape has a Drude pole (ω0,i = 0) with large oscillator
strength, ωa,i = 0.094 eV, that is the dominant feature of the line
shape. (The optimal oscillator strength scales with temperature,
as discussed in the section “Wien Frequencies for Near-Field
Energy Exchange between Real Materials”.) The consistent
simplicity of the optimal lineshape is further evidence that we are
likely approaching a global optimum. The inset of Figure 1
shows the oscillator weights: there are typically a few other low-
energy oscillators (ω0,i < 0.1 eV) with small but nonzero
oscillator strengths, which provide small adjustments to the line
shape to broaden the resonant bandwidth, with all remaining

oscillator strengths converging to zero (cf. SM). The optimal
lineshape parameters do not depend on the gap separation (in
the near-field regime), which we explain in the following
sections. The HTC from such simple lineshapes is approx-
imately 2.6× 105W/(m2K), a record level for 10 nm separations
and 300 K temperatures.
Natural questions, then, are why the Drude lineshape is

superior to more complex possibilities, why the optimal
oscillator strength is 0.094 eV, and whether real materials can
approach the optimal HTC values. In the next sections, we
develop simple theoretical explanations of these questions. We
start with the question of the optimal lineshape.

■ IDEAL PERMITTIVITY PROFILE: DRUDE WITH
SMALL ϵB AND MODERATE G

In this section we pinpoint the physical underpinnings for the
optimal Drude lineshape. We focus on three ideas: why Drude is
better than Drude−Lorentz or more complex lineshapes, why a
small background permittivity is better than large ones and why
moderate loss rates are also important. For the first two, minimal
dispersion in the permittivity is the key controlling factor; it is
not possible for a material to exhibit a resonant surface-plasmon
permittivity of Re ϵ≈−1 over an infinite bandwidth (also due to
causality constraints), but Drude materials with small back-
ground permittivities appear to offer the largest possible such
bandwidths. We show below that they reach within 10% of a
known global bound on minimal dispersion.55 With respect to
the loss rate, moderate losses are optimal because there are
trade-offs between the source amplitudes and resonant
amplifications that result in specific, moderate ranges of optimal
loss rates. The prime importance of minimal dispersion also
means that the optimal parameters are independent of gap
separation, which does not alter the requirement of a large
bandwidth of Re ϵ ≈ −1, nor the balance between source
amplitudes and resonant amplification.

■ SMALL BACKGROUND PERMITTIVITIES

The surface wave at an interface between a polaritonic material
and air exhibits a modal dispersion relation for the wavenumber
β given by56

Figure 1. Numerical optimizations of permittivity profiles to maximize the HTC of the plane−plane configuration at 300 K. (a) Schematic of the
plane−plane configuration with bulk materials represented by ϵ(ω) and 2D materials by σ(ω) = σ2D(ω). (b) The initial guess (blue) and optimal
permittivity profile (red) of one representative 400-oscillator optimization, with a gray dashed line indicating ϵ = −1. Inset shows the corresponding
oscillator amplitudes ωa,i. From a random starting point, where all ωa,i ≠ 0, the optimization result has the largest nonzero amplitude for the Drude
oscillator and only a few small amplitudes for Drude−Lorentz oscillators at low frequencies. The resultant lineshape is predominantly that of a single-
poleDrude permittivity withωa,0 =ωp = 0.094 eV. (c) Spectral HTC from the initial (blue) and optimal (red) permittivities. Inset: zoomed-in profile of
the optimal Re ϵ(ω) near the near-field thermal frequency at 300 K, which is derived in the section “Wien Frequencies for Near-Field Energy Exchange
between Real Materials”.
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c
( )

1 ( )
β ω ω

ω
= ϵ

+ ϵ (9)

The largest confinement, which occurs for the largest β, occurs
as ϵ(ω) approaches −1 from below, in the low-loss limit. This
condition also holds for two-interface geometries, for example,
metal−insulator−metal, where in the high-wavenumber limit
the two interfaces effectively decouple.56 Moreover, one can
show (cf. SM of ref 28) that the same condition of Re ϵ(ω)≈−1
is the condition at which peak HTC occurs between planar
layers in the low-loss limit, as the high confinement leads to the
strongest resonant energy transfer. Thus, maximum HTC
requires the largest possible bandwidth over which Re ϵ(ω) ≈
−1 (or, more precisely, ref 57 for which Re(−1/(ϵ− 1))≈− 1/
2). This bandwidth cannot be infinite: causality, again
manifested through the Kramers−Kronig relations, dictates
limits to the largest bandwidth for which a specific negative
permittivity can be achieved. In particular, a general result from
ref.55 imposes a restriction: the largest possible bandwidth over
which a material permittivity can remain within say ±0.4 of a
target permittivity Re ϵ(ω) = −1 is 22%; a Drude model in the
lossless limit achieves a bandwidth of 20.2%, surpassing 90% of
the global bound and confirming the importance of minimal
dispersion to maximum RHT.
Figure 2 demonstrates why a Drude material with small

background permittivity provide the largest bandwidth with Re

ϵ(ω) ≈ −1. Three permittivity lineshapes are depicted: Drude
with a small background permittivity (red), Drude with a large
background permittivity (orange), and Drude−Lorentz with a
small background permittivity (blue). The shaded gray region
covers real permittivity values between−1.4 and−0.6 for a clear
visual indication of bandwidth. The Drude−Lorentz bandwidth
is quite small due to the nonzero transition frequency; Re ϵ
ascends from −∞ at a nonzero frequency and does so much
faster than a Drude material, exhibiting large dispersion and,
thus, small bandwidth. A large background permittivity has a
similar effect. As can be seen in Figure 2, as well as from eq 4, a
large background permittivity increases the slope of the
permittivity lineshape at every frequency, hence, increasing its
dispersion and reducing its bandwidth. By contrast, the Drude
lineshape with small background permittivity exhibits the least
amount of dispersion and the largest bandwidth.
Further quantitative support of the importance of Drude-type

response and small background permittivity is given in Figure 3.
Figure 3a shows the modal dispersion relations56 between two
half spaces with the three lineshapes, as in Figure 2, each with its
optimal loss rate in terms of HTC. Figure 3b shows the spectral
photon exchange, that is, the temperature-independent part of
the HTC integrand. The close correspondence between (a) and
(b) confirms the suitability of using modal analysis to interpret
the modal and spectral components of HTC. With the given
resonance type, Drude or Drude-Lorentz, and background
permittivity ϵb, the scattering loss rate is the other key parameter
determining the lineshape and therefore the HTC. Unlike the
loss rates in the many-oscillator representation of eq 8, for a
single oscillator the optimal loss rate will be a nonzero value that
helps mimic the many “lossless” oscillators of the Kramers−
Kronig relation (which each have δ-function losses at their
transition frequencies). The optimal loss rates for the Drude and
Drude-Lorentz models are computed by a grid search for each
resonance type and ϵb. Then we can compare the three types of
lineshapes at their respective optimal loss rates, which reveals
that the largest achievable β values are similar, indicating similar
levels of spatial confinement on resonance. Yet one can see that
the larger bandwidth of the small-background-permittivity
Drude material provides a substantial advantage over the other
materials.
Large, nonideal background permittivities usually occur in

heavy elements or their compounds, which have many high-
energy inner-shell electrons. This indicates the possible
superiority of light materials, with small attendant background
permittivities, a suggestion that is substantiated in our

Figure 2. Three representative classes of permittivity lineshapes: red,
Drude with background permittivity ϵb = 1; orange, Drude with ϵb = 12;
blue, Drude−Lorentz with ϵb = 12, all with equal loss rate g = 0.1. Near-
resonance frequencies with Re ϵ ∈ [−1.4, −0.6] are shaded in gray to
indicate the relative high-RHT bandwidths of each lineshape. Drude
with ϵb = 1 provides much broader bandwidth with Re ϵ ≈ −1 than the
other two lineshapes.

Figure 3. (a) Modal dispersions and (b) spectral photon exchanges of three representative lineshapes at their optimal loss-rates: Drude with ϵb = 1
(red), Drude with ϵb = 12 (yellow) and Drude−Lorentz with ϵb = 1 (blue), with frequencies normalized to their respective oscillator frequencies. Both
panels show that Drude with ϵb = 1 lineshape gives broadest-band LDOS and, therefore, heat transfer profiles.
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investigation of optimal real materials the section “Candidate
Materials for Maximum Near-Field RHT”.

■ MODERATE LOSS
The second key factor of the optimal Drude lineshape is a
moderate loss rate γ. Figure 4 compares modal dispersions and
spectral photon exchanges among three different choices of g =
γ/ωp, 0.01, 0.17, and 0.5, for the same single-Drude-pole line
shape with ϵb = 1. Large g broadens the spectral contributions,
but gives few high-β states or small LDOS on resonance, seen
from the dispersion.Meanwhile, small g provides huge LDOS on
resonance, at the cost of very narrow peak-HTC bandwidth. The
very large loss rates, while penalized less than very small loss
rates, show suboptimal HTC due to their small peak values. The
best integrated broadband response comes from intermediate
values of g, which equals 0.17 for ϵb = 1. For ϵb ranging from 1 to
13, optimal g and can range from 0.17 to 0.04, decreasing as ϵb
increases. Our result of moderate loss as optimal confirms
coupled-mode predictions of such a trend.36

■ WIEN FREQUENCIES FOR NEAR-FIELD ENERGY
EXCHANGE BETWEEN REAL MATERIALS

The final optimal Drude parameter to explain is the plasma
frequency ωp, whose optimum is 0.094 eV for 300 K HTC. This
optimal value is closely linked to the precise temperature

spectrum of the sources under consideration, and in this section
we derive a linear relation between the two.
For two macroscopic bodies in the far field, Wien’s

displacement law states that the radiated energy of a blackbody
is maximized at a frequency linearly proportional to its
temperature.58,59 The radiated energy is given by

H T S(1/4 ) ( , ) ( ) d2
0

∫π ω ω ω= Θ
∞

, where S(ω) in this case

is interpreted as a photon emissivity rate. A key distinction in the
far-field case is that the term S(ω) is proportional to the photon
density of states, which scales as the square of frequency, ∼ω2

(ref 60). This quadratic scaling is critical to the determination of
the Wien peak, blue-shifting the maximum-emission peak
relative to the peak of the Planck distribution. One can similarly
define a “Wien” peak for maximum far-field HTC, simply

replacing Θ(ω, T) with T
T

( , )ω∂Θ
∂

. The optimal frequency for

maximum HTC again scales linearly with temperature. One can
generalize this further to radiative heat transfer between two
bodies, with temperatures T1 and T2 yielding slight corrections
to the linear relationship. The classical Wien’s Law is
independent of separations as it relies only on energy
transported through far-field channels. From Wien’s Law, the
intuition has developed that the thermal wavelength is about 8−
10 μm near 300 K temperatures,59 but this intuition is only valid

Figure 4. Spectral dispersions and photon exchanges of Drude with ϵb = 1 at three different loss rates, with frequencies normalized to plasma frequency
ωp. (a) Modal dispersions of gap surface waves. The permittivity with loss rate too large (green) suffers from poor spatial confinement. Smaller loss
rates (purple) correspond to larger in-plane wavevector and better confinement on resonance, yet according to (b) the spectral photon exchanges, too
small of a loss rate results in overly narrow spectral bandwidths. A moderate loss rate (red) balances the effects of spatial confinement and spectral
bandwidth and gives best total HTC from plasmonic materials.

Figure 5. Spectral photon exchanges and spectral HTCs leading to Wien frequencies between different material models: blackbodies, bulk Drude
materials, and 2D plasmonic materials, normalized to their respectiveωWien. (a) Comparisons of spectral photon exchanges. In the case of blackbodies
(blue), it is directly proportional to the DOS of propagating waves, whereas for bulk (red) and 2D (gray) material, photon exchange profiles are much
narrower and are closely related to LDOS in the near field. Wien frequency analysis for blackbodies (b), bulk Drude and 2D materials (c). The red

curves show the normalized temperature factor
k

T
T

1 ( , )

B

ω∂Θ
∂ , the green curves are the spectral photon exchanges, and the purple curves represent the

product of the them, also defined as the spectral HTC. The peaks of the spectral HTC define ωWien for each case.
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for the far-field. In the near field, the wavelengths for peak
thermal exchange are significantly longer.
In the near field, the spectral photon exchange (which replaces

blackbody emissivity in the frequency integral) can exhibit
extraordinarily large peaks due to the access to high-confine-
ment near-field waves, but it cannot exhibit scaling ∼ω2. In
contrast to the divergent density of propagating photon states,
there is a known sum rule requiring that the integrated near-field
local density of states must be finite.61,62 For a Drude material,
the spectral photon exchange and the local density of states
exhibit peaks at a resonant frequency ωr, where the real part of
the permittivity is −1, that is, Re ϵ(ωr) = −1, as seen in the red
curve of Figure 5a. For room temperature and higher, the
bandwidth of the Drude-material photon transmission is
typically much smaller than the width of the thermal spectrum,
such that the overlap between the two is essentially the integral
of the spectral photon exchange multiplied by the value of the
Planck distribution at ωr, contrasted in Figure 5b,c. This implies
that the optimal ωr will maximize the product of two quantities:
the integrated energy exchange and the value of Θ(ωr). The
Planck distribution actually peaks at zero frequency. Yet, a
Drude material with an infinitesimal resonant frequency will
necessarily have near-zero bandwidth and is nonideal. At higher
frequencies, the bandwidth increases, though the Planck
distribution starts to decrease. In the SM, we show that one
can derive transcendental equations relating the optimal ωr for
heat transfer, which defines the Wien frequency ωW, relative to
temperature, leading to an HTC “near-field Wien frequency”,
ωW

HTC, given by

k T
2.57W

HTC

B

ωℏ
=

(10)

For d over the range of 10−1000 nm, the near-field Wien
frequency is independent of gap separation (like its far-field
analog), because it is primarily determined by the Planck
distribution. This optimal resonance frequency directly
d e t e r m i n e s t h e o p t i m a l p l a s m a f r e q u e n c y :

( 1)/p W
HTC

b bω ω= ϵ + ϵ ; if we insert eq 10 into this relation
and choose ϵb = 1, we find an optimal plasma frequency of 0.094
eV, exactly matching that discovered by the computational
optimization. Moreover, with these optimal resonance frequen-
cies and the optimal lineshape, the maximum possible HTC
values scale linearly with temperature, given by

THTC (760 W/m /K )2 2= (11)

for d = 10 nm. Thus, we have an explanation for the optimal
plasma frequency and for the maximal HTC value, which is
determined by the combination of bringing a large integrated
spectral photon exchange as close as possible to zero frequency,
where the Planck distribution peaks.
At high enough temperatures, for example, T ≳ 130 K for the

d = 10 nm configurations, these maximum near-field radiative
HTCs exceed conductive HTCs in the ballistic regime under
standard conditions for temperature and pressure63 (cf. SM), as
shown Figure 6c. Any given material (dashed lines) will not
show linear temperature scaling itself, but the envelope of
optimal materials (solid red line) exhibits exactly the predicted
linear scaling.
A similar analysis can be done for radiative heat transfer

(RHT) between two bodies of the same material at temper-
atures T1 and T2, with T2 > T1. For T1 = 0 (an exact analog of the
conventional Wien-law condition), the optimal Wien frequency
ωr for near-field RHT is given by (cf. SM)

k T
1.59W

RHT

B

ωℏ
=

(12)

In the near field, the optimal Wien frequency is equivalent to
the optimal Wien wavelength, regardless of whether the
integrand is written in terms of frequency or wavelength. This
stands in stark contrast to the far-field case, where theWien peak
is different in the two cases, due to the inverse relationship
between the two that enters the differential in addition to the
integrand itself.59 This does not occur in the near field thanks to
the analytical structure of theHTC and heat-transfer expressions
in which the integration parameter is effectively lnω; since
d(lnω) = |d(ln λ)|, there is no distinction whether parametrizing
the radiation laws with ω or λ.
Figure 6 plots the optimal Wien frequencies, and their

corresponding Wien wavelengths, for both near- and far-field
HTC (a) and RHT (b). One can see the linear scaling relations
that emerge in the near-field cases and the significantly smaller
slopes that lead tomuch longer optimal wavelengths than for far-
field blackbodies. Even for temperatures as high as 1000 K, the
optimal resonance wavelength is 6 μm. For HTC at 300 K, the
optimal plasma frequency of 0.094 eV translates to an optimal
Wien frequency of 0.067 eV, which corresponds to an optimal
operating wavelength of 19 μm.

Figure 6. Temperature-scaling laws for Wien frequencies for blackbodies in the far-field (blue) and bulk Drude materials in the near field (red) and for
near field radiativeHTC and conductiveHTC. (a)Wien frequencies for HTC at different operating temperatures. For bulkDrudematerials in the near
field,ωWien corresponds to 19 μm at 300 K. (b)Wien frequencies for RHT at different hot-body temperatures with selected cold-body temperatures at
T = 0, 300, and 500 K. Blackbody Wien frequencies are always quite larger than those for near-field Drude materials in each of the cases. (c)
Comparison of temperature scaling of HTCs of optimal near-field RHT and conductive heat transfer in the ballistic regime. Each dashed line is an
HTC curve from an actual material optimized for temperature T = 30, 100, and 600 K.
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■ DEEP-SUBWAVELENGTH, POSSIBLY
ANISOTROPIC, STRUCTURED METAMATERIALS

Metamaterials, which exhibit effective properties different from
their constituent materials,64 are a natural platform for
potentially achieving maximal near-field HTC and RHT.
Metamaterials with isotropic effective permittivities naturally
fall under the umbrella of eq 8 andmay exhibit HTC values close
to the optimal 2 × 105 W/m2 K at 10 nm separations and 300 K
temperatures but cannot surpass them. Yet anisotropic effective
permittivities, as seen, for example, in hyperbolic metamate-
rials,4,30,65 are not subject to the isotropic representation of eq 8
and could potentially exhibit superior performance.
We performed an extensive set of computational optimiza-

tions of three classes of Maxwell−Garnett effective-medium
metamaterials,4,66 namely, SM, and summarize our findings
according to the class of structures under consideration:

1. Isotropic, periodic holes: the materials retain isotropic
optical properties. With air fill fraction represented by f,
the effective permittivity is:

f f
f f

(1 ) 1
1 (1 )effϵ =

− ϵ + +
− + + ϵ

ϵ
(13)

as detailed in the SM, reducing the electronic density of
plasmonic materials brings down both the effective ϵb and
effectiveωp. For nonideal materials with ϵb andωp that are
too high, isotropic air holes can greatly help. They cannot
improve materials that are already ideal.

2. Periodic cylinders: cylinders oriented perpendicular to
the surfaces lead to a difference in the permittivities along
the ordinary and extraordinary axes. The ordinary-axis
permittivity is the same as that for isotropic periodic holes,
and many resonance properties are similar. There can be a
little improvement from anisotropic hyperbolic bands, but
the effect is minor and not obvious. Apart from the
anisotropic hyperbolic bands, such patterning scheme
offers effects that are similar to those from isotropic air
holes, as shown in the SM, but is of more practical interest
due to fabrication considerations.

3. Thin-film stacks (hyperbolic metamaterials): deep-
subwavelength, periodic multilayer stacks lead to hyper-
bolic dispersion bands. However, the hyperbolic reso-

nances are far less tightly confined to the surface
compared to plasmon or phonon surface polaritons,
resulting in smaller HTC. The thin-film stacks are inferior
to periodic cylinders for ideal and nearly ideal materials. If
one starts with materials with nonideal bulk parameters,
such as highly doped Si with both ϵb andωp too high, such
patterning can be optimized to offer HTC improve-
ments,36 yet can not outperform the ideal bulk materials.

We refer to the SM for a detailed effective-medium theory
(EMT) description of the effective permittivities arising from
these patterning schemes and a comparison of their optimal
HTC values. In the section “Candidate Materials for Maximum
Near-Field RHT” we compare estimates of optimal nano-
structured materials to optimal bulk materials. Our central
finding is that patterning can provide marginal improvements
but at the expense of significant fabrication complexity due to
the tiny required feature sizes. Moreover, all of the effective-
medium-theory values become approximate (and likely over-
estimates) at the small separation distances of primary interest,
further diminishing the possible improvements via such
patterning.

■ 2D MATERIALS
Reduced material dimensionality leads to qualitatively different
polaritonic response. The plasmon-polariton dispersion relation
for a 2D plasmonic material,67 for example, is quite different
from that of a bulk plasmonic half space,56 with the resonant
frequency scaling as the square root of the wavenumber,60

rω β∼ , instead of asymptotically approaching a constant
value. Yet we still find that optimal 2D materials exhibit narrow-
band RHT response relative to blackbodies, offering many
similarities to their optimal bulk counterparts. In this section, we
carry out similar numerical optimizations and analyses as those
in the bulk case and comparatively present the results for 2D
materials by identifying the direct analogs and highlighting the
differences with the optimal bulk Drude materials.
For a 2D material, causality implies a conductivity of the form

(cf. SM),

i t
ii

N
i

i i
2D 0

1

b,
2

2
0,
2∑σ ω

ω
ω ω ωγ

= ϵ
− += (14)

Figure 7. Optimal 2D materials for near-field RHT. (a) The initial guess (blue) and optimal imaginary part of the conductivity profile (red) of one

representative optimization, normalized by e
0

2
σ =

πℏ
. Inset shows the corresponding oscillator amplitudesωb,i. From a random starting point, where all

ωb,i≠ 0, the optimization result has the largest nonzero amplitude for a Drude−Lorentz oscillator with a very small intrinsic frequency (≈ 10meV) and
a few small amplitudes for other oscillators at low frequencies. The resultant lineshape is predominantly that of a single-pole Drude−Lorentz
conductivity. (b) Spectral HTC from the initial (blue) and optimal (red) conductivities. The optimal profile gives a larger spectral contribution over a
broad range of resonant frequencies. (c) Optimal single-pole 2D materials are nearly as good as the optimal multi-pole materials. The optimal Drude-
oscillator amplitudes vary with gap separation, in contrast to bulk Drude materials. Optimal parameters for d = 10, 100, and 1000 nm give the gap
separation dependence of HTC as the blue, green, and yellow curves. Optimal HTC from the optimal ωb at every d is presented as the black line.
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which is the analog of the bulk-material representation, eq 8. The
t is a dummy-variable thickness (assumed to be 1 nm
throughout) such that the ωb,i have dimensions of frequency

and is canceled in the sum rule for ωb,i: i i t
n e

mb,
2 1 2D

2

b eff
ω∑ = ϵ

(ref

60). 2D materials, including 2D insulators (e.g., undoped 2D
hBN68), 2D semiconductors (e.g., 2D transition metal
dichalcogenides like MoS2,

69 and 2D black phosphorus70), 2D
semimetals (e.g., graphene,71 borophene72), and 2D metals
(e.g., atomically thin metals73,74) exhibit 2D phonons/interband

transitions,75 leading to the Drude−Lorentz terms (with
nonzero ω0,i), and the latter two classes, in addition, also
possess 2D plasmons/intraband transitions, leading to Drude
terms (with ω0,i = 0).76,77 By the same process as for bulk
materials, we use gradient descent to optimize over the set of
conductivities represented by eq 14, and we find analogous
results: the optimal profile is dominated by a single-pole
conductivity, as shown in Figure 7(a), and compared to the
initial guess, the optimal profile provides spectral HTC
contributions at a rather broad range of low-energy frequencies,

Figure 8. Background permittivity ϵb and resonance frequency ωr for ideal, hypothetical bulk materials (hollow circles) and materials reported in
literature (solid circles), on top of which HTC contours with levels ranging from 1 × 103 W/(m2K) to 2.4 × 105 W/(m2K). Permittivity parameters
including ϵb and carrier concentrations n are from refs 3 and 78−85.

Figure 9.HTC values at 300 K of the plane−plane configuration at different gap separations d for ideal bulk materials (dashed lines) and 2Dmaterials
(dotted lines), materials with experimentally measured permittivity or conductivity data available (solid lines), and materials with periodic-cylindrical-
hole patterning (triangles). The two orange star markers on top of the SiO2 line mark the previous theoretical state-of-the-art of unpatterned bulk
materials for gap separations d = 10, 100 nm, whereas HTCs from optimal bulk materials are marked in the two blue star markers, at the respective d.
Optimal 2D plasmonic materials can even have slightly higher HTCs than those of the optimal bulk plasmonic materials, with almost exactly the same
scaling with the gap distance, but with their oscillator amplitudes optimized at each specific d. Optimal 2D conductivities range from n2D = 9× 109 cm−2

for d = 10 nm to n2D = 9 × 1013 cm−2 for d = 1000 nm, assuming linear Dirac electronic dispersion, as exhibited by graphene. For nonideal materials,
such as n-type InP and n-type Si, deep-subwavelength patterning helps them approach the optimal HTC values at the cost of tiny feature sizes.
Furthermore, the accuracy of the EMT calculations can be questionable below d = 50 nm, and the triangles are therefore kept hollow. Permittivity and
conductivity parameters of real materials are from refs 3, 78−82, and 85−88.
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as shown in Figure 7b. Although the dominant oscillator is not
strictly Drude type, its frequency is nearly zero (≈10 meV). The
other oscillators either have very small amplitudes ωb,i if their
oscillator frequencies are small or have exactly ωb,i = 0 if their
oscillator frequencies are large. The optimal HTC level is 2.7 ×
105 W/(m2K), larger even than the optimal bulk-material HTC.
Even for a completely 2D plasmonic material, that is, with single
2D Drude oscillator optimized for d = 10 nm so that ωb,0 = 0.24
eV, HTC can be as large as 2.4 × 105 W/(m2K), as highlighted
by the blue marker in Figure 7c. For every other d, the optimal
Drude oscillator amplitudes ωb and, hence, 2D carrier
concentrations, n2D, need to be reoptimized in order to match
the optimal gap surface wave modal dispersions, as opposed to
being essentially constant in the case of bulk Drude materials.
Yet, interestingly, the optimized 2Dmaterial parameters provide
HTCs that scale with d exactly the same way as the optimal bulk
material, as seen from Figure 9. We detail the gap-distance
dependence of the optimalωb and n2D of 2D plasmonicmaterials
in the SM. These findings suggest that these structures may be
approaching some universal, material-dimension-independent
fundamental limit.
The bulk-material intuition carries over to 2D materials: the

Drude pole or Drude−Lorentz pole with negligible ω0 (≪0.1
eV) is ideal because it maximizes the bandwidth of large RHT
response, and the optimal loss rate is a moderate value that
trades off strong confinement (low loss) with large bandwidth
(high loss). In addition, 2D material performances are also
affected by the substrate. Substrates with refractive index higher
than that of vacuum lead to decreased confinement (cf. SM) and
are therefore nonideal. The Wien frequencies for RHT and
HTC are quite similar to those of bulk materials, with a slight
blue shift due to the wider bandwidth arising from the dispersion
of two sheets of 2Dmaterials at the optimal loss rate, as shown in
Figure 5a,c. We include a plot of the optimal 2D-material Wien
frequencies in the SM.

■ CANDIDATE MATERIALS FOR MAXIMUM
NEAR-FIELD RHT

Here we synthesize the optimal bulk- and 2D-material results of
the previous sections to identify the best candidate materials for
maximal HTC and RHT. For bulk-material HTC at 300 K, we

found three key properties: Drude-like response with resonant
wavelengths of ≈19 μm, small background permittivity and
moderate loss rates (g ≈ 0.04 to 0.17, decreasing as ϵb increases,
detailed in SM). Loss rates and background permittivities can be
tabulated for a wide variety of materials. In Figure 8, we plot
HTC level curves as a function of resonant frequency ωr and
background permittivity ϵb, overlaid with a wide variety of
possible materials. Noble metals (Ag, Al) and alternative
plasmonic materials such as GZO (Ga-doped ZnO) and Dy-
doped CdO have resonant frequencies that are too large, while
semiconductors such as Si and GaAs can be doped to the right
resonant frequencies but exhibit background permittivities that
are too large. Lightly doped TCOs and III-nitrides are
particularly promising material classes that present themselves
as potentially optimal.
Figure 9 compares the theoretical HTC values for many bulk

and 2D materials, as well as the optimal possible values, which
are shown as the dashed (bulk) and dotted (2D material) lines.
The previous theoretical state-of-the-art for unpatterned bulk
materials, using SiO2, is depicted with orange markers. Doped
III−Vs, such as GaAs and InP, even with their high background
permittivities, can already show enhancements beyond SiO2,
given published permittivity data.82,87 Yet, the real gains to be
had are with the lighter materials, such as AlN, CdO, and ITO. If
these materials can be doped to the optimal carrier
concentrations listed in Figure 9, they can exhibit 5×
enhancements beyond the current state-of-the-art. (The optimal
carrier concentrations tend to range from 3 to 7 × 1018 cm−3,
multiplied by ϵbmeff/me.) Patterning in suboptimal materials,
such as n-type InP and n-type Si, can lead to slight further
enhancements, discussed below, though the feasibility of
effective-medium theory for describing such response is dubious
at separations below 50 nm for the given choice of temperature
and unit cell size, as indicated by the open markers. 2Dmaterials
are particularly promising: purely plasmonic response can
exhibit broad resonant bandwidth and strong confinement at
the same time. For example, graphene with Fermi level EF = 0.4
eV (optical conductivity from ref 88) is shown to exhibit near-
optimal HTC values at separations on the order of 100 nm,
though a key distinction from the optimal bulk materials is that
the optimal oscillator amplitude ωb, and therefore, the optimal
2D carrier concentration n2D varies with the separation distance.

Figure 10.HTCs from periodic cylindrical-hole patterning of manymaterials, as a function a feature size for a unit cell fixed at 50 nm length and width.
For ideal materials (metal, ITO, and CdO at their optimal carrier concentrations), the unpatterned HTC (right-most axis) reaches at least half of the
best patterned HTC levels. For materials with much higher than ideal carrier concentrations (n-type InP, n-type InAs, n-type Si, Zn0.982Ga0.018O),
patterning can greatly help. Patterning does not help polar dielectrics (SiC). Solid triangles indicate materials with experimentally measured
permittivity data at the required carrier concentrations, while hollow triangles indicate the need for such measurements. All finite-feature-size data uses
effective-medium theory and may overestimate HTC, further strengthening the case for ideal materials without patterning.
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Agnostic of the bandgap and electronic dispersion of the 2D
materials, the optimalωb and the corresponding maximal HTCs
can be identified for each d, as shown in Figure 7c and SM. These
HTCs along the dotted gray line in Figure 9 are higher than
those from any other materials. For linear Dirac electronic
dispersion, as in graphene, the optimal carrier concentration

optimal n2D is ( )9 10 cm d11 2
100 nm

2
× ×− . Graphene holds

potential for optical response over a great range of electro-
magnetic spectrum from radio waves to visible frequencies,77

and its optical conductivity σ2D(ω) is well-studied in literature,
with the infrared spectral range dominated by intraband
transitions,71,88,89 making it the exemplary 2D material in our
study. However, as the optical properties of other 2D plasmonic
materials, 2D semiconductors, and semimetals, in particular, are
better characterized, it is likely that they may offer similar or
superior performance to graphene.
Figure 10 confirms the pros and cons of metamaterial

patterning. In a previous section we found that periodic
cylindrical holes offer strong performance in a lithography-
compatible form factor, and in Figure 10 we consider the effects
of such patterns on HTC values at 300 K, and those of the other
two types of patterning are detailed in the SM. For a unit cell size
of 50 nm, about the largest possible that could conceivably
exhibit effective-medium behavior at the separations of interest
in the near field, we find that HTC for each material tends to
peak at feature sizes on the order of 5 nm. For these feature sizes,
the significant air fraction reduces the background permittivity
and increases the HTC bandwidth. Yet one can see that these
effects are marginal and that the optimal bulk values (hollow
triangles on the right-hand axis) offer nearly the same HTC
values in much simpler architectures.

■ LOOKING FORWARD
In this Article, we identified the optimal material characteristics
for maximum near-field RHT rate and HTC. Our results suggest
two key avenues for future exploration: synthesis and character-
ization of mid- to far-infrared Drude plasmonic materials with
small background permittivities and identification of optimal
patterning schemes outside of the realm of effective-medium
theory.
The first avenue, centering around the development of mid- to

far-infrared plasmonic materials, stems from the three properties
that we identify as critical to maximal HTC for bulk materials:
small background permittivity, moderate loss rate, and a
resonance frequency (where Re ϵ ≈ −1) corresponding to
≈19 μm wavelength at 300 K, and which scales linearly with
temperature. TCOs and III-nitrides with moderate carrier
concentrations should be nearly ideal, and validation will be
important, as there has been little investigation into engineering
plasmonic material properties at such long wavelengths.
Moreover, since moderate loss is superior to low loss, new
materials should be available that might traditionally have been
too lossy for other plasmonics applications.
Meanwhile, 2D plasmonic materials with a single-Drude-pole

optical conductivity (and, thus, negligible high-frequency
Drude−Lorentz poles) can offer record-level near-field HTCs
at their optimal carrier concentrations and loss rates. 2D
semiconductors and 2D semimetals with strong 2D plasmons
and the ability to support highly confined broadband resonances
in the infrared may be great materials to start with. Our analysis
suggests engineering efforts devoted to optimizing the spectral
bandwidth and broadband confinement of gap surface

resonances of 2D materials near the prescribed near-field
Wien frequencies, through either doping, gate-biasing, introduc-
ing heterostructures, and nanopatterning. Being naturally
surface-passivated and, thus, easy for various integration
methods with existing building blocks and devices,90,91 2D
materials offer great promise in future energy technologies.
Serendipitously, these bulk and 2D material candidates we
propose not only offer possibilities to maximize near-field RHT
efficiencies but also provide platforms for tunable thermal
applications with the array of available switching and dynamic
control approaches.92−99

The second avenue to explore is that of wavelength-scale
patterning, which lies between the two regimes studied in this
paper (bulk materials and subwavelength-scale patterning of
metamaterials). We showed that subwavelength-scale pattern-
ing, resulting in effective-medium properties, can lead to further
gains in maximal RHT andHTC, but that such gains come at the
expense of very small features relative to their bulk counterparts
and only very modest rate increases. Thus, for wavelength-scale
patterning, the open questions are two-fold: will the larger size
scale of the patterning relieve the stringent feature-size
constraints imposed by effective-medium theory and, in tandem,
will it enable substantially larger HTCs and RHT rates beyond
the values predicted here? Given the significant recent work in
both large-scale, computational “inverse design”,100−104 as well
as analytical and computational bounds to optical re-
sponse,28,32,61,105−107 conclusively answering such questions
should be feasible in the near future.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01176.

Permittivity and conductivity representations via dis-
cretized Kramers−Kronig relations, setup of oscillator-
strength optimization of HTC, results from oscillator-
strength optimizations, derivations of near-field Wien
frequencies, comparison between optimal radiative HTC
and conductive HTC, HTC from three types of effective-
medium metamaterials, optical properties of 2D plas-
monic materials and their near-field HTCs, Wien
frequencies for 2D plasmonic materials, 2D plasmonic
materials with different substrate refractive indices, gap
distance dependence of optimal ωb and n2D for 2D
plasmonic materials (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Owen D. Miller − Department of Applied Physics and Energy
Sciences Institute, Yale University, New Haven, Connecticut
06511, United States; orcid.org/0000-0003-2745-2392;
Email: owen.miller@yale.edu

Author
Lang Zhang−Department of Applied Physics and Energy Sciences
Institute, Yale University, New Haven, Connecticut 06511,
United States; orcid.org/0000-0001-7477-6715

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsphotonics.0c01176

Notes
The authors declare no competing financial interest.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c01176
ACS Photonics 2020, 7, 3116−3129

3126

https://pubs.acs.org/doi/10.1021/acsphotonics.0c01176?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c01176/suppl_file/ph0c01176_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Owen+D.+Miller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-2745-2392
mailto:owen.miller@yale.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lang+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7477-6715
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01176?ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01176?ref=pdf


■ ACKNOWLEDGMENTS

This work was supported by the Army Research Office under
Grant No. W911NF-19-1-0279.

■ REFERENCES
(1) Song, B.; Ganjeh, Y.; Sadat, S.; Thompson, D.; Fiorino, A.;
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(107) Angeris, G.; Vucǩovic,́ J.; Boyd, S. P. Computational Bounds for
Photonic Design. ACS Photonics 2019, 6, 1232−1239.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c01176
ACS Photonics 2020, 7, 3116−3129

3129

https://dx.doi.org/10.1021/acs.nanolett.7b01422
https://dx.doi.org/10.1021/acs.nanolett.7b01422
https://dx.doi.org/10.1021/acsphotonics.8b01585
https://dx.doi.org/10.1021/acsphotonics.8b01585
https://dx.doi.org/10.1021/acsnano.7b08231
https://dx.doi.org/10.1021/acsnano.7b08231
https://dx.doi.org/10.1002/adma.201606128
https://dx.doi.org/10.1002/adma.201606128
https://dx.doi.org/10.1109/JSTQE.2014.2375153
https://dx.doi.org/10.1109/JSTQE.2014.2375153
https://dx.doi.org/10.1364/OE.21.026387
https://dx.doi.org/10.1364/OE.21.026387
https://dx.doi.org/10.1021/nl3011885
https://dx.doi.org/10.1021/nl3011885
https://dx.doi.org/10.1021/nl3011885
https://dx.doi.org/10.1088/0034-4885/61/1/001
https://dx.doi.org/10.1088/0034-4885/61/1/001
https://dx.doi.org/10.1038/s41566-018-0246-9
https://dx.doi.org/10.1364/OE.397502
https://dx.doi.org/10.1364/OE.397502
https://dx.doi.org/10.1364/OE.385440
https://dx.doi.org/10.1364/OE.385440
https://dx.doi.org/10.1021/acsphotonics.0c00768
https://dx.doi.org/10.1021/acsphotonics.0c00768
https://dx.doi.org/10.1364/OE.24.003329
https://dx.doi.org/10.1117/12.2567733
https://dx.doi.org/10.1117/12.2567733
https://dx.doi.org/10.1021/acsphotonics.9b00154
https://dx.doi.org/10.1021/acsphotonics.9b00154
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01176?ref=pdf


Supplementary Material: Optimal materials for maximum near-field radiative heat
transfer

Lang Zhang1 and Owen D. Miller1

1Department of Applied Physics and Energy Sciences Institute,
Yale University, New Haven, Connecticut 06511, USA

(Dated: September 8, 2020)

CONTENTS

I. Permittivity and conductivity representations via discretized Kramers–Kronig relations 1

II. Setup of oscillator-strength optimization of HTC 2

III. Results from oscillator-strength optimizations 4

IV. Derivations of near-field Wien frequencies 4

V. Comparison between optimal radiative HTC and conductive HTC 5

VI. Parametric optimizations of the optimal loss rates 7

VII. HTC from three types of effective-medium metamaterials 8

VIII. Optical properties of 2D plasmonic materials and their near-field HTCs 10

IX. Wien frequencies for 2D plasmonic materials 11

X. 2D plasmonic materials with different substrate refractive indices 11

XI. Gap distance dependence of optimal ωb and n2D for 2D plasmonic materials 12

References 12

I. PERMITTIVITY AND CONDUCTIVITY REPRESENTATIONS VIA DISCRETIZED
KRAMERS–KRONIG RELATIONS

In this section we show that starting only with the Kramers–Kronig (KK) relations (in turn, dependent only on
causality and basic asymptotic-frequency assumptions), a general representation of any permittivity is that of a
summation of Drude–Lorentz oscillators. We start with the KK relation, one version of which relates the real part of
the permittivity at any one frequency to a principal-value integral of the imaginary part:

Re (ε(ω)) = 1 +
2

π
P.V.

ˆ ∞
0

ω′ Im ε(ω′)dω′

ω′2 − ω2
. (S1)

One can see that the integrand already has a passing resemblance to a lossless Lorentz–Drude oscillator with oscillator
frequency ω′, but it may not be immediately obvious how to think about the ω′ Im ε(ω′) term in the numerator. The
key is to use a known sum rule for the imaginary part, which is [1]:

ˆ ∞
0

ω′ Im (ε(ω′)) dω′ =
πω2

p

2
, (S2)

where ωp is the plasma frequency, which is related to free carrier concentration through Eq. (3) in the main text. The
sum rule implies that ω′ Im ε(ω′) can be discretized into local basis functions whose amplitudes are constrained by the



2

constant on the right-hand side of Eq. (S2). As one example, we consider the limit of perfectly localized delta-function
basis functions for the decomposition:

ω′ Im (ε(ω′)) =
πω2

p

2

N∑
i

ciδ(ω
′ − ωi). (S3)

The constant πω2
p/2, in tandem with the sum rule of Eq. (S2), ensures that basis-function coefficients that determine

the distribution of ω′ Im ε(ω′) must sum to 1:

N∑
i

ci = 1. (S4)

Inserting this representation of the imaginary part into the KK relation for the real part, Eq. (S1), we find:

Re
(
εKK(ω)

)
= 1 +

N∑
i

ciω
2
p

ω2
i − ω2

, (S5)

where the superscript “KK” has been added to distinguish from a Drude–Lorentz representation below. Hence in the
limit of perfectly localized basis functions, the KK relations imply a permittivity whose real part satisfies Eq. (S5),
and whose imaginary part (rewriting Eq. (S3)) satisfies

Im
(
εKK(ω)

)
=
πω2

p

2

N∑
i

ci
δ(ω − ωi)

ωi
. (S6)

It is straightforward to show that the KK representation of Eqs. (S5,S6) is equivalent to a lossless Drude–Lorentz
(DL) representation. Consider a permittivity comprising a summation of Drude–Lorentz oscillators:

εDL(ω) =

(
1 +

N∑
i

ciω
2
p

ω2
i − ω2 − iγω

)
. (S7)

In the limit of lossless oscillators, we take γ → 0 from above. To evaluate the DL expression in this limit, considering
the real-line integral of ωi gives an important identity: limγ→0 [1/(x+ iγ)] = 1/x − iπδ(x), in which case the DL
expression simplifies to:

lim
γ→0

1

ω2
i − ω2 − iγω

=
1

ω2
i − ω2

+ iπδ(ω2
i − ω2) =

1

ω2
i − ω2

+
iπ

2ωi
δ(ωi − ω), (S8)

where the last equality uses the fact that ωi ≥ 0 to remove an additional delta-function term proportional to δ(ω+ωi).
Inserting the right-hand side of Eq. (S8) into the DL representation gives:

lim
γ→0

εDL(ω) = 1 +
N∑
i

ciω
2
p

ω2
i − ω2

+ i
πω2

p

2

N∑
i

ci
δ(ω − ωi)

ωi
= εKK(ω). (S9)

Hence, any KK material can be represented as a (possibly infinite) sum of Drude–Lorentz oscillators.
A similar KK representation and sum rule [2] yields an analogous Drude–Lorentz representation for arbitrary 2D

conductivities (with dummy thickness variable t inserted for dimensionality compatibility):

σ(ω) = iε0ωt

[
N∑
i

ciω
2
p

ω2
i − ω2

+ i
π

2

N∑
i

ω2
p

ci
ωi
δ(ω − ωi)

]
= lim
γ→0

σDL(ω). (S10)

II. SETUP OF OSCILLATOR-STRENGTH OPTIMIZATION OF HTC

Given the general permittivity/conductivity expressions derived in the previous section, arising from the Kramers–
Kronig relations, the optimal material that maximizes HTC is the one whose oscillator strengths satisfy the optimiza-
tion problem:

maximize
ωa,i,ω0,i

HTC

subject to ωa,i ≥ 0, ω0,i ≥ 0.
(S11)
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To reduce the dimensionality of the problem, we can select a finite number of oscillators N and fix their intrinsic
frequencies ω0,i over a one-dimensional grid, leaving only the oscillator strengths ωa,i to be optimized. (By fixing
ω0,0 = 0 we ensure the first oscillator is the Drude type, and any other ω0,i6=0 represents the oscillator frequencies of
Drude-Lorentz oscillators.) We can then optimize over the ω0,i via gradient descent, converging on local optima and
re-running the optimizations many times to ensure discovery of solutions at or very near the global optima.
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FIG. S1: Results of numerical experiments for the choice of γ in the optimizations, shown in terms of the optimal
HTCs from multi-oscillator optimizations with different choices of γ. γ in the range 0.002 ∼ 0.008 eV leads to HTCs
higher than 2.5× 105 W/(m2K), and is thus used in later optimizations.

To compute the gradients, we start with the modal photon exchange function:

ξ(ω, β) =
4(Im r)2e2ik0,zd

|1− r2e2ik0,zd|2
, (S12)

and the interface reflectivity:

r(ω, β) =
k0,zε− kz

k0,zε+ kz
, (S13)

where k0,z =
√

ω2

c2 − β2 and kz =
√
εω

2

c2 − β2 are respectively the z-component of wavevectors in air and in material.

The gradient of the modal exchange function is given by

dξ(ω, β)

dωa,i
= 2 Re

[
dξ(ω, β)

dr

dr(ω, β)

dε

dε(ω)

dωa,i

]
, (S14)

where

dξ(ω, β)

dr
=

e2ik0,zd(r − r∗)(1− rr∗e2ik0,zd)

2(1− r∗e2ik0,zd)(1− r2e2ik0,zd)2
, (S15)

dr(ω, β)

dε
=

2kzk0,z

(k0,zε+ kz)2
, (S16)

dε(ω)

dωa,i
= − 2ωa,i

ω2 − ω2
0,i + iωγi

. (S17)

The HTC gradients with respect to each oscillator strength are calculated by numerical integration:

dHTC

dωa,i
=

1

4π2

ˆ ∞
0

dΘ(ω, T )

dT

ˆ ∞
0

dξ(ω, β)

dωa,i
βdβdω. (S18)
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How are the loss levels (scattering rates) γ of these basis functions chosen? Before a large number of optimizations
can be run, numerical experiments can be done to fix the range plausible γ. With a fixed grid spacing δ = ω0,i+1−ω0,i,
we run test optimizations to analyze the effects of γ values on the optimal HTCs, results summarized in Fig. ??. It
is from these results that γ range of 0.002 ∼ 0.008 eV, leading to higher than 2.5× 105 W/(m2K) HTCs in the
experiments, is identified to potentially maximize HTC. The optimization results shown throughout are based on
such choice of γ range.

III. RESULTS FROM OSCILLATOR-STRENGTH OPTIMIZATIONS
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FIG. S2: (a) The initial guess (blue) and optimal permittivity profile (red) of one representative 100-oscillator
optimization, with oscillator frequency ω0,i sampled from 0 to slightly beyond 0.4 eV. Inset shows the corresponding
oscillator amplitudes ωa,i. (b) Spectral HTC from the initial (blue) and optimal (red) permittivities. Inset:
zoomed-in profile of the optimal εr near the optimal ωr.

In the main text, we presented the results from a 400-oscillator optimization where grid spacing of ω0,i is 0.001 eV
and γ = 0.004 eV, which clearly shows that (1) the Drude-dominant lineshape is pivotal, and that (2) multiple Drude-
Lorentz oscillators can be useful to broaden the resonance bandwidth by flattening the range of ε ≈ −1 near the
optimal ωr.

At lower resolutions and the same loss levels (γ = 0.004 eV), it becomes obvious that the individual oscillators with
oscillator frequency ω0,i near the optimal ωr tend to create small bumps in the permittivity profile and in spectral
HTC, as can be demonstrated in a 100-oscillator optimization where ω0,i is sampled from 0 to 0.4 eV with grid
spacing 0.004 eV. From a random starting point where all ωa,i 6= 0, the optimization result has the largest non-zero
amplitude for the Drude oscillator and only a few small amplitudes for Drude-Lorentz oscillators at low frequencies.
Such features from low-resolution results are retained in higher-resolution optimizations, and can be useful to help
the latter better converge to high-quality local optima via successive refinement. The inset in Fig. S2(a) shows that
every ωa,i with oscillator frequency ω0,i > 0.1 eV tends to vanish. Hence the resultant lineshape is predominantly that
of a single-pole Drude permittivity with ωa,0 = ωp = 0.094 eV superimposed by small bumps near ωr which flatten
the range of ε ≈ −1 and thus broaden the resonance bandwidth. Furthermore, the bumps around the optimal ωr, due
to the coarse sampling of ω0,i and the small loss level, can be smoothed out at higher resolution, as is apparent from
the optimization results in the main text.

IV. DERIVATIONS OF NEAR-FIELD WIEN FREQUENCIES

In this section, we derive the optimal plasma frequency, or related resonance frequency, of the Drude materials
that are optimal for HTC. Using the optimal permittivity lineshape argued in the main text, i.e. Drude-type with
εb = 1, the only free parameter in fixing ε(ω) is the plasma frequency ωp, or the resonance frequency ωr. This optimal
resonance frequency problem is quite similar to the Wien frequency argument in blackbody radiation. For largest

spectral contribution to HTC between blackbodies, the Wien frequency ωHTC
W maximizes dΘ(ω,T )

dT B(ω, T ) where the
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spectral radiance B(ω, T ) is given by

B(ω, T ) =
ω2

4π3c2
~ω

e~ω/kBT − 1
. (S19)

Setting x = ~ω
kBT

and taking its derivative to 0, the maximum is found to solve the equation

(x− 4)ex + x+ 4 = 0, (S20)

which has the positive solution 3.83. For Wien frequency for RHT ωRHT
W , which maximizes (Θ(ω, T2)−Θ(ω, T1))B(ω,T),

and taking the cold-body, or environment temperature T1 = 0, the corresponding equation is

(x− 3)ex + 3 = 0, (S21)

which has the positive solution 2.82. Take the radiation from the sun for example: with T2 = 5778 K, one finds
ωRHT

W = 1.91 eV, which is the well-known Wien frequency from solar radiation. Parametrizing Planck’s law in
Eq. (S19) by wavelength λ gives a different Wien frequency ωRHT

W = 1.40 eV.
For near-field Wien frequencies, the major contribution comes from gap surface waves (tunnelling evanescent waves)

instead of propagating plane waves. This is apparent in the much sharper spectral photon exchange of the “near field,
Drude” configuration than the “far field, blackbody” configuration, and lead to Wien frequencies significantly smaller
than those of the blackbodies. By normalizing the frequencies in the HTC integral against the resonance frequency
ν = ω/ωr, the HTC is given by

HTC =
1

4π2

ˆ ∞
0

dΘ(ν, T )

dT
ωr

ˆ ∞
0

ξ(ν, β)βdβ︸ ︷︷ ︸
S(ν)

dν. (S22)

S(ν) is now independent of ωr and sharply peaks exactly at ν = 1, i.e. ω = ωr. We therefore arrive at a single-

parameter optimization aiming to maximize dΘ(ν=1,T )
dT ωr over ωr. The optimization simplifies to solving

(x− 3)ex + x+ 3 = 0, (S23)

leading to x = ~ω
kBT

= 2.57. As for RHT in the near field, with the cold-body temperature T1 = 0, the objective

function now is (Θ(ν = 1, T2)−Θ(ν = 1, T1 = 0))ωr = Θ(ν = 1, T2)ωr, leading to

(x− 2)ex + 2 = 0, (S24)

which has a solution x = ~ω
kBT2

= 1.59. For other non-zero T1, similar equations can be derived and solved, and the

results are plotted in Fig.6(b) of the main texts.
Just like the far-field case for blackbodies, the near-field Wien laws conclude that the hotter the temperature,

the bluer the peak spectral thermal radiation, owing to the Planck distribution Θ(ω, T ). The linear scaling relation
with temperature is retained in the near field, which is a signature of thermal exchange via radiation, in contrast
to conduction, whose scaling relation we show in the next section. The differences between the density of states of
propagating plane waves in the far field and the local density of states of the gap surface waves in the near field
manifest themselves as the different numerical factors in these transcendental equations, which result in much smaller
solutions as Wien frequencies in the near field. Fortuitously, the equations for the near-field case are agnostic whether
parametrizing the RHT or HTC integral with ω or λ, preventing the ambiguity of the spectral location of Wien peak
which occurs in the far-field case.

V. COMPARISON BETWEEN OPTIMAL RADIATIVE HTC AND CONDUCTIVE HTC

Given the optimal loss rate for a given separation distance, ωHTC
W derived above dictate the optimal ωp at every

temperature, and lead to optimal near-field radiative HTC values that scale linearly with temperature as described
by Eq. (9) in the main text, which we include here:

HTCrad =
(
760 W/m2/K2

)
T. (S25)

For conductive HTC for the plane-plane configuration, gap separations on the order of 10nm are well below the mean
free path in air 68 nm [3], thus it is safe to assume ballistic conductive heat transfer: no collision of gas molecules
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confirming that the optimal bulk material parameters are unaffected by the given range of d. Optimal HTC levels
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FIG. S4: Parametric optimization of optimal g for a list of practical εb. Optimal g decreases as εb increases.

happen in the air gap, and the only collisions occur on the air-material interface. The conductive HTC for such
configuration is [4]:

HTCcond =
3

2
kBngvz, (S26)

where vz =
√

kBT
m is the mean velocity of particles normal to the plates, and m is single-particle mass. Assuming

particle number density in air under standard conditions for temperature and pressure, ng = 2.5× 1025 m−3, the
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conductive HTC scales with the square root of T as

HTCcond =
(

8786 W/m2/K3/2
)√

T . (S27)

At lower temperatures, conductive heat transfer dominates, whereas near-field RHT can surpass conductive heat
transfer rates at high enough temperatures. For the gap separation of 10 nm, the two HTCs cross at T = 134 K.

VI. PARAMETRIC OPTIMIZATIONS OF THE OPTIMAL LOSS RATES

Recognizing that the optimal plasmonic loss rates balances both effects of bandwidth of gap surface resonances
and of on-resonance density of states, a quantitative analysis incorporating both effects can be challenging. However,
parametric sweeping of loss rates can be helpful for given choices of geometry and material parameters. For two bulk
objects with changing gap separations, only the amplitude of the spectral photon exchanges are different, and their
bandwidths are fixed for fixed loss rate, and all the optimality conditions, especially ωp and g, are the same. Figure S3
is a result from parametric optimization of loss rates given εb = 1 and ωp dictated by Wien frequencies, confirming
that the optimal loss rates is a fixed value for the range of gap distances.

In practical sense, materials with εb 6= 1 are used more often in near-field RHT. As Fig. S4 shows, higher εb tends
to lead to lower optimal g, as the former lowers resonance bandwidth in spectral photon exchange, requiring larger
resonance strength provided by smaller g. Meanwhile, given the practical range of g, the smaller εb, the more g tends
to affect HTCs.
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FIG. S5: Modal photon exchanges of ITO (a) in bulk, unpatterned form, (b) with periodic and deep-subwavelength
patterning of isotropic holes, (c) with periodic and deep-subwavelength patterning of cylinders in z-direction, and
(d) with periodic and deep-subwavelength patterning of thin-film stacks in z-direction (hyperbolic metamaterials).
The volume fill ratio of air is 0.8 for all the patterned materials.
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FIG. S6: HTCs from periodic isotropic air-hole patterning of many materials, as a function a feature size for a unit
cell fixed at 50 nm length and width. For ideal materials (metal, ITO, CdO at their optimal carrier concentrations),
the unpatterned HTC (right-most axis) reaches at least half of the best patterned HTC levels. All the HTCs of the
best patterned cases do not surpass the upper bound provided by the causality constrained numerical optimizations.
For materials with much higher than ideal carrier concentrations (n-type InP, n-type InAs, n-type Si,
Zn0.982Ga0.018O), patterning can greatly help. Polar dielectrics (for example, SiC) are rarely helped by such
patterning. Solid triangles indicate materials with experimentally measured permittivity data at the required carrier
concentrations, while hollow triangles indicate the need for such measurements. All finite-feature-size data uses
effective-medium theory and may overestimate HTC. Even though under some feature sizes, such patterning scheme
is better than in-plane patterning of 2D cylindrical holes shown in the main text, these data are of more theoretical
interest than practical implication as fabrication of 3D isotropic holes can be complicated.

VII. HTC FROM THREE TYPES OF EFFECTIVE-MEDIUM METAMATERIALS

Many insights about the effective-medium patterned materials can be gained by examining in tendem the homog-
enized material parameters and the corresponding modal photon exchanges. Here we choose ITO (εb = 3.8) at its
optimal carrier concentration (n = 5.9× 1018 cm−3) as an example. As can be seen from Fig. S5(a), for the bulk,
unpatterned ITO, the optimal n guarantees alignment of strong gap surface resonance at the optimal ωr, namely
ωWien. But because of the non-unity εb, its relative bandwidth, ∆ω

ωr
(∆ω here is the full width at half of the maximal

spectral HTC), is not as broad as it would optimally be based only on causality. Broader bandwidth can be expected
from inclusions of air holes (or air cylinders, air layers) which reduces the effective εb by reducing the effective electron
density.

According to Maxwell–Garnett effective-medium theory, an air fill fraction f in a medium with permittivity ε yields
an effective permittivity of

εeff =
(1− f)ε+ 1 + f

1− f + (1 + f)ε
ε. (S28)

From Fig. S5(b), the surface resonance frequency is lowered compared to the unpatterned case in (a), due to smaller
ωp,eff , and the relative bandwidth is broadened, due to smaller εb,eff . Although ωr becomes misaligned with ωWien

after patterning, the overall HTC is higher than that of the unpatterned ITO, thanks to the reduction in εb,eff .
Periodic patterning of cylinders along z-direction, the in-plane patterning version of holes, has effective permittivity

along the ordinary axis the same as Eq. (S28):

εo,eff =
(1− f)ε+ 1 + f

1− f + (1 + f)ε
ε, (S29)

and along the extraordinary axis:

εe,eff = (1− f)ε+ f. (S30)
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Anisotropy leads to hyperbolic resonances near 0.04 ∼ 0.05 eV, as shown by Fig. S5(c), yet other than that, much of
the behavior is similar to that from isotropic, periodic hole patterning. This modal photon exchange corresponds to
the data point of ITO at feature size 25 nm in Fig. 10 of the main text. The enhancement of HTC here, about a
factor of 1.4, is close to that from the optimal feature size.

Hyperbolic metamaterials, in this case thin stacks of material and air arranged periodically in z-direction, can be
homogeneously characterized by

εo,eff = (1− f)ε+ f, (S31)

εe,eff =
ε

1− f + fε
, (S32)

along ordinary and extraordinary axes respectively. For such configuration, thermal exchanges occur predominantly
though hyperbolic resonances, shown by Fig. S5(d), whose confinement to the planar-planar surfaces is fairly small.
Thus even with a broad resonance bandwidth, its HTC is nowhere near that from the above two types of effective-
medium metamaterials, and even smaller than that of the unpatterned ITO.

We chose ITO (at its optimal free-carrier concentration) as the material here due to its near-optimality for near-
field RHT. However, this material is not necessarily optimized for a particular subwavelength patterning strategy. In
fact, as shown in Fig. 10 in the main text, for deep-subwavelength patterning of periodic cylinders at 4 nm feature
size, n-type InP and InAs can outperform the optimal ITO. However, even the HTC from the best effective-medium
metamaterial (that from n-type InP in our investigation) is less than a factor of 2 improvement from the bulk,
unpatterned optimal value provided by ITO, and smaller than the that from bulk ideal metal. Clearly, under effective
material parameters, whether isotropic or anisotropic, nearly the best HTC values can be provided by simple bulk
materials.
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FIG. S7: HTCs from hyperbolic metamaterials of thin stacks of materials and air, as a function of feature size for a
unit cell fixed at 50 nm thickness. For ideal materials (metal, ITO, CdO at their optimal carrier concentrations), the
unpatterned HTC (right-most axis) always offer better HTC levels than the thin-film patterned ones. For materials
with much higher than ideal carrier concentrations (n-type InP, n-type InAs, n-type Si, Zn0.982Ga0.018O), patterning
can provide a decent amount of improvement. Such patterning does not help polar dielectrics (SiC). Solid triangles
indicate materials with experimentally measured permittivity data at the required carrier concentrations, while
hollow triangles indicate the need for such measurements. All finite-feature-size data uses effective-medium theory
and may overestimate HTC. Such patterning provide enhancement no where near that from in-plane patterning of
2D cylindrical holes.

In Fig. 10 of the main text, we detailed the HTCs versus material feature sizes for 2D in-plane patterning of
cylindrical holes, such patterning scheme is both experimentally viable and theoretically promising for enhancing
HTC from previous literature. For completeness, here we also compare effects of the other two types of nano-
patterning, isotropic air-holes and thin-film stacks, on HTC levels of the same set of representative materials under
the same unit cell size and different material feature sizes. Fig. S6 shows the HTCs for a range of feature sizes for
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isotropically patterned 3D air-holes. Conclusions similar to those from 2D in-plane patterning of cylindrical holes can
be drawn. The decrease in carrier concentration helps decrease εb and ωp, providing broader bandwidth and better
alignment with ωWien. The optimal feature size is the one that helps achieve the best overall effects for HTC in terms
of bandwidth and resonance frequency. Under certain feature sizes, the former patterning scheme can even beat the
latter. However, the latter is of more practical interesting due to fabrication considerations. Whichever the patterning
scheme and whatever the feature size, the HTCs of the patterned cases do not surpass 2.6× 105 W/(m2K), the upper
bound provided by the causality constrained numerical optimizations.

Fig. S7 details the HTCs from hyperbolic metamaterials of thin stacks of materials and air, as a function of feature
size, i.e. the material thickness. For all optimal and some of the sub-optimal materials, such patterning will not
provide improvement, no matter what the feature size. Only when the bulk parameters are bad enough, for example,
n-type InP, n-type InAs and n-type Si that have large εb, or Zn0.982Ga0.018O that have large ωp, HTC enhancement at
the optimal fill fraction is decent but not as good as the other two types of patterning described above. As illustrated
by the example of ITO, the mechanism of HTC enhancement is different for hyperbolic materials, as relatively narrow-
band gap surface modes are now replaced by broadband hyperbolic modes. As these modes are far less well-confined
to the interfaces, compromising photon exchanges across the interfaces, they are by no means ideal for heat transfer.
This mechanism does not affect the resonance frequency or increase the resonance strength either, confirming again
HTC levels of polar dielectrics are barely improved from nano-patterning.

Notably, all the predicted HTCs from effective-medium approximations can only hold as gap distances are adequately
large, temperatures adequately low, and unit-cell sizes and feature sizes adequately small. They are likely overestimates
when the gap distances are small.

VIII. OPTICAL PROPERTIES OF 2D PLASMONIC MATERIALS AND THEIR NEAR-FIELD HTCS

At the air interface of a 2D polaritonic medium with conductivity σ(ω, β) with substrate εsub, the reflectivity is
given by

r(ω, β) = −1 +
ksub,z

k0,z

2ε0ω

2εsubε0ω + ksub,zσ(ω, β)
, (S33)

while the 2D surface wave dispersion is given by [5]

εsub

ksub,z
+

1

k0,z
= −σ(ω, β)

ωε0
, (S34)

where ksub,z =
√

εsubω2

c2 − β2.

Following the notations from the main text, a simple 2D plasmonic conductivity with negligible spatial dispersion
can be written as

σ(ω) = iε0ωt
ω2

b

ω2 + iγω
. (S35)

The 2D surface wave dispersion in the non-retarded regime is

β =
2

t

ω2 + iγω

ω2
b

, (S36)

which shows the scaling of ωr with
√
β. More precisely, through a more rigorous quasi-static analysis, it can be

established that [6]

ω2
r =

βt

2
ω2

b. (S37)

For two parallel sheets of identical 2D material in the near-field regime with separation d, air as substrate, the gap
surface waves have dispersion (

2

k0
+

iσ

ωε0

)2

eik0,zd −
(
iσ

ωε0

)2

e−ik0,zd = 0. (S38)
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With the simple 2D conductivity model as Eq. (S35) and the optimal parameters, these 2D gap surface waves provide
modal photon exchange as shown in Fig. S9(a), which also leads to the 2D material spectral photon exchange profile
in Fig. 5 of the main text.

We also compute the HTC from σ2D of 2D materials reported in literature, such as graphene whose intraband
electronic transitions dominate its optical properties in the infrared:

σintra(ω, T ) =
2ie2T

π~(ω + iγ)
ln

(
2cosh

EF

2T

)
, (S39)

where EF is the Fermi level, and EF = 0.4 eV gives to the graphene HTC in Fig. 10 of the main text.

IX. WIEN FREQUENCIES FOR 2D PLASMONIC MATERIALS

Although the 2D plasmons can have quite different modal dispersions from the bulk ones, they are by nature still
narrow-band compared to the dispersion and density of states for propagating plane waves. Therefore, to a large
degree, the Wien analysis similar to that of the optimal bulk Drude materials can apply. To be exact, we numerically
identified ωWien for 2D plasmonic materials, and plot them in tandem with those of the bulk Drude ones in Fig. S8.
At their optimal loss rate which is around g = 0.06 for the temperature range of interest, the HTC Wien frequencies
of 2D materials are quite similar to those of bulk Drude materials, with a slight blue shift due to the slightly wider
bandwidth of the dispersion from two sheets of 2D materials.
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FIG. S8: Wien frequencies of 2D and bulk plasmonic materials for the near-field planar-planar configuration. The
red curve for the “bulk Drude” case can be analytically derived (Eq. (S23)), whereas the grey curve for “2D
plasmonic” is numerically identified for each T .

X. 2D PLASMONIC MATERIALS WITH DIFFERENT SUBSTRATE REFRACTIVE INDICES

The 2D surface wave dispersion and therefore RHT can be quite sensitive to the substrate permittivity for 2D
materials. Without much loss of generality, we assume that the substrate has negligible polaritonic response in the
frequency range we are interested in, and thus can be modeled by a constant permittivity, or refractive index. As a
general rule of thumb, the higher the substrate refractive index, the higher the optimal ωb and the lower the optimal
g. As can be seen from the comparison between Fig. S9(a) and (b), where both are using optimal parameters for
their respective εsub, a larger εsub leads to much narrower modal bandwidth of 2D surface waves, thus smaller spectral
contribution to HTC at the resonant frequencies. More generally, more resonances and better confinement can be
supported had there been larger index contrast, which makes vacuum the best substrate in theory for the 2D materials
of interest here.
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FIG. S9: Modal photon exchange of the optimal 2D plasmonic material at d = 10 nm, for (a) air substrate and (b)
substrate with εsub = 4.

XI. GAP DISTANCE DEPENDENCE OF OPTIMAL ωb AND n2D FOR 2D PLASMONIC MATERIALS

We parametrically optimize ωb and g pairs for the 2D conductivity in Eq. (S35) for every gap separation d, and find
the ones maximizing HTC. In Fig. S10 we present these optimal parameters for d ranging from 10 to 1000 nm that lead
to the optimal “2D plasmonic” curves in the main text. Although the scaling factor depends on the dummy-variable
thickness t, which is assumed to be 1 nm throughout, the scaling relation of optimal ωb ∼

√
d is general no matter

what the electronic dispersion. As for the carrier concentration for materials with Dirac linear dispersion, as we shown

in Fig. S10, optimal n2D = 9× 1011 cm−2 ×
(

d
100 nm

)2
, independent of the assumed length scale t.
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FIG. S10: Optimal ωb (assuming dummy-variable thickness t = 1 nm) and n2D (assuming Dirac linear dispersion)
for 2D plasmonic materials at different gap separations for temperature T = 300 K and substrate εsub = 1.
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