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Modern nanophotonic and meta-optical devices utilize a tremendous number of structural degrees of freedom to
enhance light–matter interactions. A fundamental question is how large such enhancements can be. We develop an
analytical framework to derive upper bounds to single-frequency electromagnetic response, across near- and far-field
regimes, for any materials, naturally incorporating the tandem effects of material- and radiation-induced losses. Our
framework relies on a power-conservation law for the polarization fields induced in any scatterer. It unifies previous the-
ories on optical scattering bounds and reveals new insight for optimal nanophotonic design, with applications including
far-field scattering, near-field local-density-of-states engineering, optimal wavefront shaping, and the design of perfect
absorbers. Our bounds predict strikingly large minimal thicknesses for arbitrarily patterned perfect absorbers, ranging
from 50–100 nm for typical materials at visible wavelengths to micrometer-scale thicknesses for polar dielectrics at
infrared wavelengths. We use inverse design to discover metasurface structures approaching the minimum-thickness
perfect-absorber bounds. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Electromagnetic scattering at a single frequency is constrained
by two loss mechanisms: material dissipation (absorption) and
radiative coupling (scattering). There has been substantial research
probing the limits of light–matter interactions subject to constraint
of either mechanism [1–21], yet no general theory simultaneously
accounting for both. In this paper, we develop a framework for
upper bounds to electromagnetic response, across near- and
far-field regimes, for any materials, naturally incorporating the
tandem effects of material- and radiation-induced losses. Our
framework relies on a power-conservation law for the polarization
currents induced in any medium via a volume-integral version
of the optical theorem [22–25]. An illustrative example is that of
plane-wave scattering, where our bounds unify two previously
separate approaches: radiative-coupling constraints leading to
maximum cross-sections proportional to the square wavelength
[1–6], max σ ∼ λ2, and material-dissipation constraints leading to
cross-section bounds inversely proportional to material loss [7–9],
max σ ∼ |χ |2/Imχ . Our framework contains more than a dozen
previous results [1–5,7–9,11,12,14–17] as asymptotic limits, it
regularizes unphysical divergences in these results, and it reveals
new insight for optimal nanophotonic design, with applications
including far-field scattering, near-field local-density-of-states
(LDOS) engineering, and the design of perfect absorbers. The
ramifications of our bounds for perfect absorbers are striking: we
prove that independent of the geometric patterning, the mini-
mum thickness of perfect or near-perfect absorbers comprising

conventional materials is typically on the order of 50–100 nm at
visible wavelengths, and closer to 1 µm at infrared wavelengths
where polar-dielectric materials are resonant. These values are
larger than the material skin depths, and roughly 100× larger
than those suggested by previous material-loss bounds [7]. We
use inverse design to discover ultrathin absorber designs closely
approaching the bounds. We show that these bounds can further
be utilized for the “reverse” problem of identifying optimal illumi-
nation fields, a critical element of the burgeoning field of wavefront
shaping [26–29]. The framework developed here has immedi-
ate applicability to any linear or quadratic response function in
electromagnetic scattering problems, including those that arise
in near-field radiative heat transfer (NFRHT) [30–32], optical
force/torque [14,15,33–35], high-NA metalenses [36–38], and
more general nanophotonic mode coupling [39].

For many years, there was a single “channel bound” approach
underlying the understanding of bounds to single-frequency
electromagnetic response [1–6,10–12,14,15,20]. The approach
identifies “channels” (typically infinite in number) that carry
power towards and away from the scattering body [40–43], use
intuition or asymptotic arguments to restrict the scattering process
to a finite number of channels, and then apply energy conserva-
tion within those channels to arrive at maximal power-exchange
quantities. The canonical example is in bounds for scattering cross-
sections, i.e., the total scattered power divided by the intensity of
an incoming plane wave. It has long been known that the maximal
cross-section of a subwavelength electric-dipole antenna [44], or
even a single two-level atomic transition [45], is proportional to
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the square wavelength; for scattering cross-sections, the bound
is σscat ≤ 3λ2/2π . These bounds are consequences of properties
of the incident waves (not the scatterers): though plane waves
carry infinite total power, they carry a finite amount of power in
each vector-spherical-wave (VSW) basis function, and 3λ2/2π
scattering corresponds simply to scattering all of the power in
the electric-dipole channel. Related arguments can be used to
bound NFRHT rates, which are constrained by restricting near-
field coupling to only finite-wavenumber evanescent waves [10],
absorption rates in ultrathin films, which are constrained by
symmetry to have nonzero coupling to up/down plane-wave chan-
nels [11], and maximal antenna directivity [6]. All such channel
bounds are consequences of radiative-coupling constraints, with
optimal power-flow dynamics corresponding to ideal coupling
to every channel that interacts with the scattering system. The
drawbacks of channel bounds are two-fold: (1) they do not account
for absorptive losses in the scatterers, and (2) except in the simplest
(e.g., dipolar) systems, it is typically impossible to predict a priori
how many channels may actually contribute in optimal scattering
processes. Without any such restrictions, the bounds diverge.

In recent years, an alternative approach has been developed:
material-absorption bounds [7–9,13,15–21] that rectify the two
drawbacks of the channel approaches. These bounds identify
upper limits to responses, including cross-sections [7], LDOS [19],
NFRHT [13], and 2D-material response [8], that are determined
by the lossiness of the material comprising the scattering body. The
independence from channels provides generality and convenience,
but with the key drawback that they do not account for necessary
radiative damping. Very recently, for the special case of incoherent
thermal or zero-point-field excitations, radiative and absorptive
losses are separately identified using theT operator, yielding upper
bounds for incoherent response functions [46–48].

In this work, we identify a single constraint that incorpo-
rates the cooperative effects of absorptive and radiative losses
at any level of coherence. The constraint is the volume-integral
formulation of the optical theorem (Section 2), which is an
energy-conservation constraint that imposes the condition that
absorption plus scattered power equals extinction, for any inci-
dent field. Channel bounds distill in essence to loosening this
constraint to an inequality that scattered power is bounded above
by extinction. Material-absorption bounds distill to loosening
the optical-theorem constraint to an inequality that absorbed
power is bounded above by extinction. Our key innovation is the
recognition that one can retain the entire constraint, and enforce
the requirement that the sum of absorption and scattered power
equals extinction. We describe the use of Lagrangian duality to
solve the resulting optimization problems, ultimately yielding very
general bounds to arbitrary response functions. For the important
case of plane-wave scattering (Section 3), we derive explicit bound
expressions and also identify an important application: perfect
absorbers. We show that our framework enables predictions of
the minimal scatterer thicknesses at which perfect or near-perfect
absorption may be possible, thicknesses much larger than any
previous framework predicted. Our bounds explicitly account
for the precise form of incident waves; for a given material and
designable region, then, we can treat the illumination-field degrees
of freedom as the variables and identify the optimal incoming-wave
excitation (Section 4). As one example, we show that in certain
parameter regimes, the extinction of an unpatterned sphere under
the optimal illumination field exceeds the upper bound under
plane-wave excitation, which means that as long as the incident

field is a plane wave, there is no patterning of any kind that can
reach the same power-response level of the optimal illumination.
In the final section (Section 5), we discuss the simplicity with
which our framework can be applied to numerous other scenarios,
and discuss remaining open problems.

Given the variety of bounds in Refs. [1–21], as well as those
contained here, a natural question is whether the bounds we
present here are the “best possible” bounds, or whether they will
be “superseded” later. We argue that ultimately there will be no
“best” single bound, but rather a general theory comprising dif-
ferent bounds at different levels of a priori information that is
known about a given problem. Useful analogies can be made to
information theory, where Shannon’s bounds [49,50] were not a
final conclusion but instead initiated an entire field of inquiry [51],
as well as the theory of composite materials, where early studies
into properties of simple isotropic composites [52] blossomed
into a broad theoretical framework with bounds that vary with
the amount of information known about the problem of interest
[53–58]. In electromagnetism and optics, previous bounds [1–21]
utilized information about either the number of available scattering
channels or the material loss rate; in this work, we present the first
bounds that combine the two, unifying the previous disconnected
threads. A useful indicator of whether future bounds, with possibly
more known information, will significantly alter these results is to
test whether physical designs can approach these bounds, as it can
almost never be guaranteed (in any field) whether given bounds
are precisely achievable by real physical implementations. As we
show in Section 3, in the quest for ultrathin perfect absorbers,
physical designs can approach the new bounds within a factor of
two, suggesting minimal opportunity for later revision.

2. GENERAL FORMALISM

Our central finding is a set of upper bounds to maximal single-
frequency response. The problem of interest is to optimize any
electromagnetic response function f subject only to Maxwell’s
equations, while allowing for arbitrary patterning within a pre-
scribed region of space. However, Maxwell’s equations represent
a nonconvex and highly complex constraint for which global
bounds are not known. Instead, we use the optical theorem, and in
particular a volume-integral formulation of the optical theorem,
as a simple quadratic constraint for which global bounds can be
derived. We start with the volume-integral version of Maxwell’s
equations, which provide a simple and direct starting point to
derive the optical theorem (Section 2.A). The optical-theorem
constraint is quadratic, and we discuss how many previous results
can be derived from weaker forms of the constraint. Then in
Section 2.B, we use the formalism of Lagrangian duality to derive
a single general bound expression, Eq. (6), from which many
specialized results follow. In Section 2.C we consider canonical
electromagnetic response functions: absorption, scattering, extinc-
tion, and LDOS. Throughout, for compact general expressions,
we use six-vector notation with Greek letters denoting vectors and
tensors:ψ for fields, φ for polarization currents, and χ for the sus-
ceptibility tensor (which in its most general form can be a nonlocal,
inhomogeneous, bianisotropic, 6× 6 tensor operator [59]), and
we use dimensionless units for which the vacuum permittivity and
permeability equal one, ε0 =µ0 = 1. The six-vector fields and
polarization currents are given by

ψ =

(
E
H

)
, φ =

(
P
M

)
. (1)
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A. Optical Theorem Constraint

The optical theorem manifests energy conservation: the total
power taken from an incident field must equal the sum of the
powers absorbed and scattered. As discussed below, the key version
of the optical theorem that enables a meaningful constraint is the
version that arises from the volume equivalence principle. This
principle enables the transformation of the differential Maxwell
equations to a volume-integral form. It states that any scattering
problem can be separated into a background material distribution
(not necessarily homogeneous), and an additional distributed
“scatterer” susceptibility. The total fields ψ are given by the fields
incident within the background, ψinc, plus scattered fields 00φ

that arise from polarization currents φ induced in the volume of
the scatterer, where 00 is the background-Green’s-function con-
volution operator. For simplicity in the optical theorem below, we
define a variable ξ that is the negative inverse of the susceptibility
operator, ξ =−χ−1. With this notation, the statement that the
total field equals the sum of the incident and scattered fields can be
written: −ξφ =ψinc + 00φ. Rearranging to have the unknown
variables on the left-hand side and the known variables on the
right-hand side yields the volume-integral equation (VIE)

[00 + ξ ] φ =−ψinc. (2)

We generally allow for χ to be nonlocal, as arises in the extreme
near field [60] and in 2D materials [61]; whenχ is local and can be
written χ(x , x ′)= χ(x)δ(x − x ′), Eq. (2) becomes a standard
VIE [59]:

∫
V 00(x , x ′)φ(x ′)dx ′ − χ−1(x)φ(x)=−ψinc(x),

where V is the volume of the scatterer.
The VIE optical theorem can be derived from Eq. (2) by taking

the inner product of Eq. (2) with φ (denoted φ†), multiplying by
ω/2, and taking the imaginary part of both sides of the equation,
yielding

ω

2
φ† (Im00) φ︸ ︷︷ ︸

Pscat

+
ω

2
φ† (Imξ) φ︸ ︷︷ ︸

Pabs

=
ω

2
Im
(
ψ

†
incφ

)
︸ ︷︷ ︸

Pext

, (3)

where the inner product is the integral over the volume of the scat-
terer. Within the optical theorem of Eq. (3), we identify the three
terms as scattered, absorbed, and extinguished power, respectively
[62,63], as depicted in Fig. 1. The operator Im00 represents power
radiated into the background, into near-field or, more typically,
far-field scattering channels. For any background materials, Im00

can be computed by standard volume-integral (or discrete-dipole-
approximation) techniques [59,64], and when the background
is lossless over the scatterer domain, it is nonsingular and simpler
to compute [65]. In vacuum, the operator can be written ana-
lytically for high-symmetry domains. It is a positive semidefinite
operator because the power radiated by any polarization cur-
rents must be nonnegative in a passive system. The second term
with Imξ represents absorbed power: work done by the polari-
zation currents on the total fields. In terms of the susceptibility,
Imξ = χ−1(Imχ)(χ†)−1; for scalar material permittivities, it
simplifies to Imχ/|χ |2, which is the inverse of a material “figure
of merit” (FOM) that has appeared in many material-loss bounds
[7,8,19]. The operator Imξ is positive definite for any material
without gain [59,66]. Finally, the third term is the imaginary part
of the overlap between the incident field and the induced currents,
which corresponds to extinction (total power taken from the
incident fields).

Fig. 1. Illustration of the two loss mechanisms in electromagnetic
scattering. An incident field ψinc induces polarization currents φ in the
scatterer. Energy dissipated inside the material corresponds to material
loss, determined by the operator Imξ , which equals Imχ/|χ |2 for a
linear isotropic susceptibility χ . Energy coupled to the background,
into far-field or near-field power exchange, corresponds to radiative loss,
determined by the operator Im00, where 00 represents the background
(e.g., free-space) Green’s function. Total extinction is the sum of the two
and is linear inφ, as dictated by the optical theorem.

While no simplification of Maxwell’s equations will con-
tain every possible constraint, the optical theorem of Eq. (3)
has four key features: (1) it contains both the powers radiated
(Pscat) and absorbed (Pabs) by the polarization currents in a single
expression, (2) it is a quadratic constraint that is known to have
“hidden” convexity for any quadratic objective function [67], (3)
it enforces power conservation in the scattering body, and (4) it
incorporates information about the material composition of the
scatterer, and possibly a bounding volume containing it, while
being independent of any other patterning details.

The optical-theorem constraint of Eq. (3) constrains the
polarization-current vector φ to lie on the surface of a high-
dimensional ellipsoid whose principal axes are the eigenvectors of
Im00 + Imξ and whose radii are constrained by the norm ofψinc.
In Supplement 1, we show that all previous channel or material-loss
bounds discussed in the Introduction can be derived by applying
weaker versions of Eq. (3). Channel bounds can be derived by loos-
ening Eq. (3) to the inequality Pscat ≤ Pext, without the absorption
term (but implicitly using the fact that absorbed power is nonneg-
ative). Material-loss bounds can be derived by loosening Eq. (3)
to the inequality Pabs ≤ Pext, without the scattered-power term
(but using the fact that scattered power is nonnegative). Of course,
including both constraints simultaneously can only result in equal
or tighter bounds.

B. Optimization Formalism

Any electromagnetic power-flow objective function f is either
linear or quadratic in the polarization currents φ. Under a given
basis, it can be generically written as f (φ)= φ†Aφ + Im(β†φ),
where A is a Hermitian matrix, and β is any six-vector field on the
scatterer domain. The same basis is used to discretize ψinc, Imξ ,
and Im00, where the last two are now positive semi-definite matri-
ces. Then the maximal f that is possible for any scatterer is given by
the optimization problem

https://doi.org/10.6084/m9.figshare.13227863
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maximize
φ

f (φ)= φ†Aφ + Im
(
β†φ

)
subject to φ†

{Imξ + Im00} φ = Im
(
ψ

†
incφ

)
. (4)

This is a quadratic objective with a single quadratic constraint,
which is known to have strong duality [68]. If we follow standard
convex-optimization conventions and consider as our “primal”
problem that of Eq. (4), but instead written as a minimization
over the negative of f (φ), then strong duality implies that the
maximum of the corresponding Lagrangian dual functions equals
the minimum of the primal problem, and thus the maximum of
Eq. (4). By straightforward calculations, the dual function is

g (ν)=
{
−

1
4 (β + νψinc)

†B−1(ν)(β + νψinc) ν > ν0

−∞, ν < ν0
, (5)

where ν is the dual variable, B(ν)=−A+ ν(Imξ + Im00), and
ν0 is the value of ν for which the minimum eigenvalue of B(ν0) is
zero. (The definiteness of Im00 and Imξ ensures there is only one
ν0, cf. Supplement 1). At ν = ν0, some care is needed to evaluate
g (ν0) because the inverse of B(ν0) does not exist (due to the zero
eigenvalue). If β + ν0ψinc is in the range of B(ν0), then g (ν0)
takes the value of the first case in Eq. (5) with the inverse operator
replaced by the pseudo-inverse; if not, then g (ν0)→−∞. (Each
scenario arises in the examples below.) By the strong duality of
Eq. (4), the optimal value of the dual function, Eq. (5), gives the
optimal value of the “primal” problem, Eq. (4) (accounting for the
sign changes in converting the maximization to minimization). In
Supplement 1, we identify the only two possible optimal values of
ν: ν0, defined above, or ν1, which is the stationary point for ν > ν0
at which the derivative of g (ν) equals zero. Denoting this optimal
value ν∗, we can write the maximal response as

fmax =
1

4
(β + ν∗ψinc)

†
[
−A+ ν∗(Imξ + Im00)

]−1
(β + ν∗ψinc).

(6)
Although Eq. (6) may appear abstract, it is a general bound that
applies for any linear or quadratic electromagnetic response
function, from which more domain-specific specialized results
follow.

C. Power Quantities and LDOS

If one wants to maximize one of the terms already present in the
constraint, i.e., absorption, scattered power, or extinction, then the
A and β terms take particularly simple forms (cf. Supplement 1),
leading to the bounds

Pext ≤
ω

2
ψ

†
inc(Imξ + Im00)

−1ψinc, (7)

Pabs ≤
ω

2

ν∗2

4
ψ

†
inc[(ν

∗
− 1)Imξ + ν∗Im00]

−1ψinc, (8)

Pscat ≤
ω

2

ν∗2

4
ψ

†
inc[ν

∗Imξ + (ν∗ − 1)Im00]
−1ψinc, (9)

where ν∗ is the dual-variable numerical constant (Supplement 1).
Bounds on LDOS represent maximal spontaneous-emission

enhancements [69–73]. Total (electric) LDOS, ρtot, is pro-
portional to the averaged power emitted by three orthogonally
polarized and uncorrelated unit electric dipoles [74–77]. It can be
separated into a radiative part, ρrad, for far-field radiation, and a

non-radiative part, ρnr, that is absorbed by the scatterer [22]. Exact
but somewhat cumbersome LDOS bounds for arbitrary materials
are derived from Eq. (6) in Supplement 1; for nonmagnetic mate-
rials, the bounds simplify to expressions related to the maximum
power quantities given in Eqs. (7)–(9):

ρtot ≤
2

πω2

∑
j

P max
ext, j + ρ0, (10)

ρnr ≤
2

πω2

∑
j

P max
abs, j , (11)

ρrad ≤
2

πω2

∑
j

P max
sca, j + ρ0, (12)

where ρ0 is the electric LDOS of the background material, and
takes the value of ω2

2π2c 3 for a scatterer in vacuum [78]. The sum-
mation over j = 1, 2, 3 accounts for three orthogonally polarized
unit dipoles. As shown in Supplement 1, our bound is tighter
than previous bounds on LDOS [7]. In the extreme near field,
where material loss dominates, our bound agrees with the known
material-loss bound [7].

The bounds of Eqs. (6)–(12) are sufficiently general to allow
for arbitrary material composition (inhomogeneous, nonlocal,
etc.), in which case the bounds require computations involving the
Im00 and Imξ matrices. In Supplement 1, we provide a sequence
of simplifications, showing step by step the increasingly simplified
bounds that arise under restrictions of the incident field, material,
or bounding volumes involved. In the next section, we consider the
important case in which a plane wave is incident upon an isotropic
nonmagnetic medium.

3. PLANE-WAVE SCATTERING

A prototypical scattering problem is that of a plane wave in free
space incident upon an isotropic (scalar susceptibility), nonmag-
netic scatterer. The assumption of a scalar susceptibility introduces
important simplifications into the bounds. The matrix Imξ is then
a scalar multiple of the identity matrix I,

Im ξ =
Imχ

|χ |2
I, (13)

and is therefore diagonal in any basis that diagonalizes Im00,
simplifying the matrix-inverse expressions in the bounds of
Eqs. (6)–(12). For nonmagnetic materials, the polarization cur-
rents φ comprise nonzero electric polarization currents P only,
such that the 6× 6 Green’s tensor 00 can replaced by its 3× 3
electric-field-from-electric-current sub-block GEE

0 , and only the
electric part Einc of the incident field ψinc enters the bounds of
Eqs. (7)–(9). Because ImGEE

0 is positive-definite, we can sim-
plify its eigendecomposition to write ImGEE

0 =VV†, where the
columns of V, which we denote vi , form an orthogonal basis of
polarization currents. They are normalized such that the set of v†

i vi

is the eigenvalues of ImGEE
0 and represents the powers radiated by

unit-normalization polarization currents. More simply, the vi span
the space of scattering channels, and the eigenvalues ρi represent
corresponding radiated powers.

An incident propagating plane wave (or any wave incident from
the far field, cf. Supplement 1) can be decomposed in the basis V.
We write the expansion as Einc =

1
k3/2

∑
i e i vi , where the e i are the
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expansion coefficients, and we factor out the free-space wavenum-
ber k to simplify the expressions below. Inserting the eigendecom-
position of ImGEE

0 and the plane-wave expansion in this basis into
Eqs. (7)–(9) gives general power bounds for plane-wave scattering:

Pext ≤
λ2

8π2

∑
i

|e i |
2 ρi

Imξ + ρi
, (14)

Pabs ≤
λ2

8π2

ν∗2

4

∑
i

|e i |
2 ρi

(ν∗ − 1)Imξ + ν∗ρi
, (15)

Psca ≤
λ2

8π2

ν∗2

4

∑
i

|e i |
2 ρi

ν∗Imξ + (ν∗ − 1)ρi
. (16)

The variable ν∗ is the optimal dual variable discussed above;
its value can be found computationally via a transcendental
equation given in Supplement 1. The bounds of Eqs. (14)–(16)
naturally generalize previous channel bounds (∼λ2) and material-
absorption bounds (∼1/Imξ = |χ |2/Imχ ); in Supplement 1,
we prove that removing either dissipation pathway results in the
previous expressions.

The bounds of Eqs. (14)–(16) require knowledge of the eigen-
values of ImGEE

0 , and thus the exact shape of the scattering body, to
compute the values ofρi . However, analytical expressions forρi are
known for high-symmetry geometries, and a useful property of the
optimization problem of Eq. (4) is that its value is bounded above
by the same problem embedded in a larger bounding domain. (It is
always possible for the currents in the “excess” region to be zero.) In
the following two sub-sections we consider the two possible scenar-
ios one can encounter: (a) scattering by finite-sized objects, which
can be enclosed in spherical bounding surfaces, and (b) scattering
by extended (e.g., periodic) objects, which can be enclosed in pla-
nar bounding surfaces.

A. Finite-Sized Scatterers

Finite-sized scatterers can be enclosed by a minimal bounding
sphere with radius R , as in the inset of Fig. 2(a). The basis func-
tions vi are VSWs, representing orthogonal scattering channels,
with exact expressions given in Supplement 1. The state labels i
can be indexed by the triplet i = {n,m, j }, where n = 1, 2, . . . is
the total angular momentum, m =−n, . . . , n is the z-directed

angular momentum, and j = 1, 2 labels two polarizations. In
this basis, the expansion coefficients of a plane wave are given
by |e i |

2
= π(2n + 1)δm,±1|E0|

2, where E0 is the plane-wave
amplitude. We show in Supplement 1 that values ρi are given by
integrals of spherical Bessel functions. With these expressions,
bounds for extinction, scattering, and absorption cross-sections
are easily determined from Eqs. (14)–(16) after normalization by
plane-wave intensity |E0|

2/2.
In Fig. 2, we compare cross-section bounds derived from

Eqs. (14)–(16) to the actual scattering properties of a silver sphere
(permittivity data from Ref. [79]) at wavelength λ= 360 nm.
We choose 360 nm wavelength because it is close to the surface-
plasmon resonance of a silver sphere, simplifying comparisons
(instead of requiring inverse design for every data point). We also
include the previously derived channel [4] and material-absorption
[7] bounds for comparison, and in each case, one can see that
our general bounds are significantly “tighter” (smaller) than the
previous bounds, except in the expected small- and large-sized
asymptotic limits. At a particular radius, the scattering response
even reaches the general bound. In Fig. 2(c), we fix the radius at a
half-wavelength and depict the per-channel contributions to the
extinction bounds in the radiation-loss-only, material-loss-only,
and tandem-loss constraint cases. Higher-order channels have
increasingly smaller radiative losses (causing unphysical diver-
gences, discussed below), such that material loss is the dominant
dissipation channel. Conversely, material-loss-only constraints are
inefficient for lower-order channels where radiative losses domi-
nate. Incorporating both loss mechanisms removes the unphysical
divergence, accounts for radiative losses, and sets the tightest
bound among the three across all channels.

For structures smaller than roughly 10 nm, instead of bulk
permittivity data, one must employ a nonlocal model of the per-
mittivity [60], which can still be subjected to bounds but requires
modified techniques for modeling the polarization currents [8].
We retain small ratios of size to wavelength throughout the paper,
such as in Fig. 2, to observe the relevant scalings of the classical
model, and because for mid-infrared plasmonic materials, the
lineshapes are quite similar while all sizes are scaled beyond 10 nm.

Technically, the channel bound diverges for any finite-sized
scatterer, and the blue solid line in Fig. 2(a) should be infinitely
high. To obtain a reasonable finite value, we incorporate only
channels for which the sphere scattering contributions are greater

Fig. 2. Plane wave of wavelength λ= 360 nm scattering from a finite Ag [79] scatterer, enclosed by a spherical bounding volume with radius R . The
channel bound is heuristically regularized by ignoring small-scattering high-order channels. All cross-sections are normalized by geometric cross-section
A. (a). Bound of extinction cross-section for different R . The general bound regularizes divergence in previous bounds and are tighter for wavelength-scale
sizes. (b) Similar behavior is observed in the bounds for scattering and absorption cross-sections. (c) Per-channel extinction cross-section σext,n (defined
in Supplement 1) for R = λ/2. Low-order scattering channels are dominated by radiative loss, while high-order scattering channels are dominated by
material loss.
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Fig. 3. Arbitrarily patterned SiC scatterer with maximum thickness h excited by a plane wave at normal incidence and λ= 11 µm wavelength, where
SiC is polaritonic. (a) Bounds for extinction, scattering, and absorption, compared to their values for a planar SiC [97] film. (b) Inverse-designed SiC meta-
surfaces (blue markers), at varying thicknesses, achieve absorption levels at 64%–95% of the global bounds (red), suggesting the bounds are “tight” or nearly
so. (c) Absorption spectrum of ultrathin absorber from (b) with thickness h = 0.4 µm. (Inset: inverse-design structure; blue represents SiC, white represents
air.) At the target wavelength, the absorption of the inverse-designed structure is more than 10 times that of the thin film, and reaches 72% of the bound.

than 1% of the maximal response. Yet requiring knowledge of the
specific scattering structure to compute the upper limit highlights
a key drawback of the channel bounds. This empirical threshold is
responsible for two artifacts in the presented channel bounds. First,
it results in a step-like behavior that is most prominent at small
radii, where only a handful channels contribute. At each radius
where a new channel is introduced for consideration (based on
this threshold), there is an unphysical increase in the bound due
to the larger power available for scattering, absorption, etc. Such
behavior is somewhat smoothed at large radii, where the contri-
bution from each new channel is subsumed by the large number
of existing channels. Second, as we show in Supplement 1, there
can potentially be large contributions from channels beyond this
threshold. The arbitrary cutoff results in inaccurate and unphysical
underestimates of the cross-sections, which is noticeable mostly in
the large size limit in Figs. 2(a) and 2(b), where the channel bound
appears to be slightly smaller than the general bound. The only way
to avoid such artifacts would be to include all channels, in which
case the channel bounds trivialize to infinite value for any radius.

B. Extended Scatterers

The second possible scenario is scattering from an infinitely
extended (e.g., periodic) scatterer. Such scatterers can always
be enclosed by a minimal planar “film” bounding volume with
thickness h , as in the inset of Fig. 3(a). Then the basis func-
tions vi of ImGEE

0 are known to be propagating plane waves
with wave vector k= kx x̂ + ky ŷ+ kz ẑ. Now the index i maps
to the triplet i = {s , p, k‖}, where s =± denotes even and
odd modes, p =M, N denotes TE and TM polarizations, and
k‖ = kx x̂ + ky ŷ denotes the surface-parallel wave vector. In
Supplement 1, we provide the expressions for vi , and show that the
eigenvaluesρi are given by

ρ±,s (k‖)=


k2h
4kz

(
1± sin(kzh)

kzh

)
s =TE

k2h
4kz

(
1± sin(kzh)

kzh

)
∓

sin(kzh)
2 s =TM

. (17)

The incident wave itself has nonzero expansion coefficients for
basis functions with the same parallel wave vector, and is straight-
forward to expand: |e i |

2
= 2kzkδp,p ′ |E0|

2, where p ′ is the incident
polarization, E0 is the plane-wave amplitude, and k = |k|. The
optimal polarization currents comprise only waves with a parallel

wave vector identical to that of the incident wave, simplifying the
final bounds. Normalizing the bounds of Eqs. (14)–(16) by the
z-directed plane-wave intensity, |E0|

2kz/2k, gives cross-section
bounds for extended structures:

σext/A ≤ 2
∑
s=±

ρs,p ′

Imξ + ρs,p ′
, (18)

σabs/A ≤
(ν∗)2

2

∑
s=±

ρs,p ′

(ν∗ − 1)Imξ + ν∗ρs,p ′
, (19)

σsca/A ≤
(ν∗)2

2

∑
s=±

ρs,p ′

ν∗Imξ + (ν∗ − 1)ρs,p ′
, (20)

where A is the total surface area, andρs,p ′ denotes the radiation loss
by a scattering channel with parity s , polarization p ′, and parallel
wave vector k‖. Again, the use of a high-symmetry bounding vol-
ume results in analytical expressions that are easy to compute.

Figure 3(a) compares the upper bounds for the normalized
cross-sections with the cross-sections of SiC thin films at nor-
mal incidence and wavelength λ= 11 µm, where SiC supports
phonon–polariton modes. One can see that the bounds indicate
that scattering, absorption, and extinction must all be small at suf-
ficiently small thicknesses, and crossover to near-maximal possible
values at roughly one-tenth of the wavelength.

A key question for any bound is whether it is achievable with
physical design. To test the feasibility of our bounds, we utilize
inverse design [80–87], a large-scale computational optimization
technique for discovering optimal configurations of many design
parameters, to design patterned SiC films that approach their
bounds. We use a standard “topology-optimization” approach
[81,84] in which the material is represented by a grayscale density
function ranging from zero (air) to one (SiC) at every point, and
derivatives of the objective function (absorption, in this case)
are computed using adjoint sensitivities. We prioritize feasibil-
ity tests (are the bounds achievable, in theory?) over the design
of easy-to-fabricate structures. To this end, we utilize grayscale
permittivity distributions, which in theory can be mimicked by
highly subwavelength patterns of holes, but in practice would be
difficult to fabricate. Recently developed techniques [88] are able
to identify binary polaritonic structures that come quite close to
their grayscale counterparts for many applications, and give con-
fidence that binary structures with performance levels similar to
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Fig. 4. Minimum thickness required for a perfect absorber to reach 70% and 100% absorption rate under normal incidence for typical materials that are
polaritonic at (a) visible [96] and (b) infrared wavelengths [97–99]. (c) Universal curve showing minimum possible thicknesses for 100% absorption as a
function of perfect-absorber material figures of merit (FOM), given by 1/Imξ = |χ |2/Imχ . The same curve is shown in the inset for 70% absorption where
inverse-designed structures (triangular markers) demonstrate thicknesses within 1.5−2.7X of the bound.

those presented here can be discovered. We give algorithmic details
for our inverse-design procedure in Supplement 1.

Figure 3(b) depicts the bounds (red solid line) and the perform-
ance of thin films (black solid line) as a function of thickness, as
well as six different inverse-design structures that bridge most of
the gap from the thin films to the bounds. The incident wavelength
is 11 µm, and the period is 1.1 µm, with minimum feature size
0.1 µm. For an ultrathin absorber with thickness 0.4 µm, the
inverse-designed metasurface can reach 72% of the global bound.
In Fig. 3(c), we isolate the design at this smallest thickness and
show its spectral absorption percentage, as well as its geometrical
design (inset). Details of the inverse design are given in Supplement
1. Since the objective is to compare against the global, we do not
impose binarization, lithography, or other fabrication constraints.
It is apparent that inverse design can come rather close to the
bounds, suggesting they may be “tight” or nearly so.

An important ramification of the bounds of Eqs. (18)–(20)
is that they can be used to find the minimum thickness of any
patterned “perfect absorber” [89–91], achieving 100% absorption
or close to it. Such absorbers are particularly useful for sensing
applications [90,92] and the design of ultrathin solar cells [93–
95]. Absorption cross-section per area, σabs/A, is the percentage
absorption, while the bound on the right-hand side of Eq. (19) is a
function only of the incident angle, the absorber thickness (defined
as the thickness of its minimum bounding film), and its material
susceptibility χ(ω). For normally incident waves, we show in
Supplement 1 that the minimum thickness hmin to achieve 100%
absorption is given by the self-consistent equation

hmin =

(
2λ

π

)
Imξ

1− sinc2(khmin)
. (21)

Figures 4(a) and 4(b) show the minimum thicknesses (solid lines)
for 100% absorption in common metallic and polar-dielectric
materials. It is perhaps surprising how large the thicknesses
are, averaging on the order of 50 nm for metals [96] at visible
wavelengths and 1 µm for polar dielectrics [97–99] at infrared
wavelengths. The only previous bounds that could predict a min-
imal thickness for perfect absorption are the material-loss bounds
[7], which predict minimal thicknesses on the order of 0.5 nm
and 10 nm for the same materials and wavelengths, respectively.
Also included in the figures are the minimal thicknesses for 70%
absorption, which are about a factor of two smaller than the 100%

absorption curves. In Supplement 1, we present further analy-
sis suggesting two points: first, that the minimum thickness is
typically larger than the skin depth, and can be arbitrarily larger;
second, that the nearly linear dependence of aluminum’s minimal
thickness relative to wavelength indicates Drude-like permittivity,
in contrast to highly non-Drude-like behavior for Ag and Au. In
Fig. 4(c), we present universal curves on which all perfect-absorber
materials can be judged, showing the minimum thickness relative
to the wavelength as a function of the inverse of material loss,
1/Imξ = |χ |2/Imχ , which is a material FOM as discussed above
[7]. Using the same inverse-design techniques described above,
we discovered ultrathin absorbers with 70% absorption rate using
both the metals and polar dielectrics presented in Figs. 4(a) and
4(b). The grayscale design voxels are specified in Supplement 1.
As shown in the inset, all of the materials achieve 70% absorp-
tion at thicknesses within a factor of 1.5–2.7 of the bound. In
Supplement 1, we show that in the highly subwavelength limit,
the minimum thickness of a perfect absorber scales with material
FOM as hmin/λ∼ (1/Imξ)−1/3. The inverse-cubic scaling means
that there are diminishing returns to further reductions in loss,
and explains the flattening of the curves on the right-hand side of
Fig. 4(c).

4. OPTIMAL ILLUMINATION FIELDS

In this section, we identify the incident waves that maximize the
response bounds of Eqs. (7)–(12). There is significant interest in
such wavefront shaping [26–29], in particular, for the question of
identifying optimal illumination fields [15,33,34,100–103], and
yet every current approach identifies optimal fields for a given scat-
terer. Using the framework developed above, we can instead specify
only a designable region, and identify the optimal illumination
field that maximizes the bound over all possible scatterers.

To start, we assume that there is a basis8 comprising accessible
far-field illumination channels, such as plane waves, VSWs, Bessel
beams, excitations from a spatial light modulator, or any other basis
[104]. Then the incident field can be written as

ψinc =8c inc, (22)

where c inc is the vector of basis coefficients to be optimized. The
objective is to maximize any of the response bounds, Eqs. (7)–(12),
subject to some constraint on the incoming wave. The absorption
and scattering bounds, and their near-field counterparts, have
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Fig. 5. Maximum extinction Pext for arbitrary patterning and illumination, normalized by average field intensity Iavg and geometric cross-section A of
the bounding sphere of radius R . The solid red line in (a) shows the maximal extinction that can possibly be obtained by the optimal incident field, as com-
pared to the simple plane-wave incidence shown by the solid blue line. The triangular markers give the attained extinction from an unpatterned silver sphere
of radius R under either optimal incidence (red triangles) or plane-wave illumination (blue triangles). (b) Three possible design regions (sphere, cube, and
pyramid) and the corresponding optimal illumination fields (ImE x ) in the x−z plane and x−y plane (inset).

a complex dependence on ψinc due to the presence of the dual
variable ν∗, which has a nonlinear dependence on ψinc. Each of
these quantities can be locally optimized using any gradient-based
optimization method [105]. Extinction as well as total near-field
LDOS have analytic forms that lead to simple formulations of
global bounds over all incident fields. Inserting the incident-
wave basis into the extinction bound, Eq. (7), one finds that the
extinction bound can be written as

P bound
ext =

ω

2
c †

inc8
†(Imξ + Im00

)−1
8c inc, (23)

which is a simple quadratic function of c inc. This quantity should
be maximized subject to an intensity or power constraint on the
fields. Such a constraint would be of the form c †

incWc inc ≤ 1,
where W is a positive-definite Hermitian matrix representing a
power-flow measure of c inc. Since the objective and constraint are
both positive-definite quadratic forms, the optimal incident-wave
coefficients are given by an extremal eigenvector [106]: the eigen-
vector(s) corresponding to the largest eigenvalue(s) λmax of the
generalized eigenproblem

8†(Imξ + Im00)
−18c inc = λmaxWc inc. (24)

The solution to Eq. (24) offers the largest upper bound of all pos-
sible incident fields.

Figure 5(a) demonstrates the utility of optimizing over incident
fields. We consider incident fields impinging upon a finite silver
scatterer within a bounding sphere of radius R at wavelength
λ= 360 nm (as in Fig. 2, near the surface-plasmon resonance). We
consider incident fields originating from one half-space, as might
be typical in an experimental setup, and use as our basis 441 plane
waves with wave vectors k whose evenly spaced transverse com-
ponents range from −0.8k to 0.8k, where k = 2π/λ is the total
wave number. The 0.8 wave-vector cutoff corresponds to incident-
field control over a solid angle of approximately 2.5 sr, and can be
matched to the specifics of any experimental setup. We impose the
constraint that the average intensity over a region that has twice
the radius of the sphere must be equal to that of a unit-amplitude
plane wave. Figure 5(a) shows the extinction bound evaluated for a
plane wave (blue solid), as well as that for the optimal incident field
(red solid). As the radius increases, incident-field shaping can have
a substantial effect and yield bounds that are almost twice as large

as those for plane waves (1.94× exactly). (Each quantity is normal-
ized by average field intensity Iavg and the geometric cross-section
A= πR2, which is why the extinction bounds may decrease with
increasing radius.) Intriguingly, we show that even an unpatterned
sphere (red triangles) shows performance trending with that of the
bound, and for the larger radii, the unpatterned sphere under the
optimal illumination field exhibits extinction values larger than the
plane-wave bounds. This illustrates a key benefit of bounds: one
can now conclude that an unpatterned sphere with optimal illumi-
nation fields can achieve extinction values that cannot possibly be
achieved by any structure under plane-wave illumination.

Figure 5(b) further extends the optimal-illumination results,
considering three designable regions: a sphere, a cube, and a
pyramid. The optimal illumination patterns are shown in 2D
cross-sections outside and within the designable regions. The
sphere has a radius of one free-space wavelength, while the cube
and pyramid have side lengths equal to twice the free-space wave-
length. Within each domain, the optimal illumination fields
exhibit interesting patterns that seem to put field nodes (zeros) in
the interior, with the largest field amplitudes around the walls of the
domains. This can be explained physically: the optimal incident
fields will be those that couple most strongly to the polarization
currents that exhibit the smallest radiative losses. The polarization
currents that have the smallest radiative losses will tend to have
oscillations with far-field radiation patterns that cancel each other,
as occurs for oscillating currents along structural boundaries, such
as whispering-gallery modes [107,108]. This procedure can be
implemented for a beam generated by almost any means, e.g., and
incident wave passing through a scatterer with a complex structural
profile [109–111], precisely controlled spatial light modulators
[112–115], or a light source with a complex spatial emission profile
[116–118].

5. DISCUSSION AND EXTENSIONS

In this paper, we have shown that an energy-conservation law,
arising as a generalized optical theorem, enables identification of
maximal electromagnetic response at a single frequency. We con-
sidered: arbitrary linear and quadratic response functions, Eq. (6),
power-flow quantities such as absorption and scattering, Eqs. (8)
and (9), and LDOS, Eqs. (10)–(12), more specific scenarios such
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as plane-wave scattering and perfect absorbers, Eqs. (14)–(21),
and optimal illumination fields, Eq. (24). In this section, we briefly
touch on numerous other applications where this formalism can be
seamlessly applied.

One important application is to understand the largest thermal
absorption and emission of structured material. A direct conse-
quence of the incoherent nature of the thermal source is that an
upper bound to the average absorptivity/emissivity is given by the
average of the bounds for each independent incident field in an
orthogonal basis, such as VSWs for a finite scatterer. As detailed
in Supplement 1, a straightforward implementation of our for-
malism leads to an even tighter bound than the recently published
T-operator bound of Ref. [47].

A natural extension of this work is to the emergent field of 2D
materials [119–123]. From a theoretical perspective, the only dif-
ference with a 2D material is that the induced polarization currents
exist on a 2D surface instead of within a 3D volume, which would
change the interpretation of φ in Eq. (4), and would change the
domain of the Green’s function 00, but otherwise, the remainder
of the derivation is identical. Instead of rederiving the bounds in a
2D domain, however, a simpler approach is to substitute the bulk
susceptibility χ by the expression χ→ iσ2D/ωh , where σ2D is
the 2D-material conductivity, and h is an infinitesimal thickness
going to zero. (The bounds do not diverge because the geometric
or bounding volume is also proportional to h , canceling the 1/h
divergence in the material parameter.) Then, all of the bounds
derived herein apply to 2D materials as well.

Another important extension is to problems of field concen-
tration away from the scatterer itself. In surface-enhanced Raman
scattering [124–126], for example, where recently material-loss
bounds have been derived [17], it is important to maximize average
field enhancement over a plane close to but not overlapping the
scatterer itself. In this case, the objective might be the integral
of the scattered-field intensity over a plane P , i.e.,

∫
P ψ

†
scatψscat.

The scattering field is the convolution of the background Green’s
function with the polarization fields φ, such that this objective is a
quadratic function of the polarization fields:φ†

[
∫

P 0
†
000]φ, which

is exactly of the form required by Eq. (4) and thus is bounded above
by Eq. (6).

Similarly, cross-density of states [127] measures the coupling
strength between dipoles at two spatial locations, typically cou-
pled via near-field interactions, for applications including Förster
energy transfer [128] and quantum entanglement [129,130].
Such coupling effectively reduces to optimizing the field strength
at one location from a point source at another location, mapping
identically to the field concentration problem.

Maximizing optical forces and torques has been a topic of sub-
stantial interest [14,15,33–35], and is one that our framework
applies to very naturally. One can compute force and torque via
surface integrals of quantities related to the Maxwell stress tensor,
which is a quadratic function of the electric and magnetic fields. By
the same connection of the scattered fields to the induced polari-
zation fields, it is possible to write any force/torque optimization
function as a sum of quadratic- and linear-in-polarization terms,
thereby equivalent to Eq. (4) and subject to the bounds of Eq. (6).

During the preparation of this paper, two preprints appeared
[131,132] that contain ideas similar to those here. It is recognized
in Refs. [131,132] that one can utilize the equality of absorp-
tion plus scattering and extinction, i.e., Eq. (3), as a quadratic
electromagnetic constraint. They further show that an additional

constraint can be identified—essentially, the real-part analog
of Eq. (3). In this context, they provide bounds very similar to
ours for power-flow quantities and LDOS, Ref. [131] consid-
ers the problem of directional scattering, and they both show a
two-parameter dual formulation for incorporating the second
constraint. Conversely, they do not have bounds for arbitrary linear
and quadratic functions, i.e., our Eq. (6), or for non-scalar or non-
local susceptibility operators, nor do they consider the possibility
of bounds over all incoming wavefronts. And they do not identify
the optimal value of the dual variable ν∗, which is important, for
example, in determining the analytical bound of Eq. (21). Without
an analytical value for ν∗, it is not possible to identify the minimum
thickness of a perfect absorber.

More recent preprints have shown that one can generate an
infinite set of (mostly nonconvex) constraints from spatially
localized versions of the optical theorem [133,134]. There are
advantages and drawbacks to such an approach relative to the
one we presented here. With more constraints, one can poten-
tially identify tighter bounds. But since most of the constraints
are nonconvex, global optima are identifiable only through con-
vex relaxations [135], which introduce two disadvantages to
the computational approach. First, the bounds are numerical in
nature and do not offer the intuition of semi-analytical bounds
(as presented here). Second, they are computationally expen-
sive and thus currently limited to wavelength-scale device sizes.
Moreover, the non-analytical nature of the bounds precludes
explicit identification of the dependence of the bounds on the
incident fields, which enabled the wavefront-shaping results in
Section 4, and which appears to not be possible in the approaches
of Refs. [133,134]. Thus, the framework in this paper is com-
plementary to that of Refs. [133,134], with each offering unique
comparative advantages.

Looking forward, the energy-conservation approach devel-
oped here provides a framework for further generalizations and
unifications. The incorporation of multiple constraints naturally
leads to connections to the optimization field of semidefinite
programming [135], as utilized in Ref. [136], where rapid global-
optimization computational techniques are well established [105].
Away from single-frequency problems, the question of how to
incorporate nonzero bandwidth in a bound framework would
have important ramifications. As shown in Ref. [19], it may be
possible to do so through generalized quadratic constraints based
on causality. Finally, a key variable missing from semi-analytical,
conservation-law-based bounds is the refractive index of a trans-
parent medium, which does appear in bounds pertaining to the
broadband absorption of sunlight [94,137–139]. Accounting
for refractive index may require a unification of conservation-law
approaches with, perhaps, those based on Lagrangian duality
[140], or on sophisticated approaches developed in the theory of
composite materials [53,58,141,142]. With such generalizations
and unifications, it may be possible to understand the extreme
limits of electromagnetic response in any scenario.
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This document provides supplementary information to “Maximal single-frequency electromagnetic 
response.” We (1) establish our general framework through Lagrangian dual function, (2) derive 
expressions for bounds on power quantities presented in Section IIC of the main text,(3) derive 
bounds in the special case for plane wave incidence presented in Section III of the main text, (4) 
derive bounds for extended scatters which are greatly simplified for the special case of plane wave 
incidence, (5) discuss minimum thickness required for perfect absorbers, (6) lay out the inverse design 
procedure for the ultrathin absorber and (7) the corresponding optimal designs for the data presented 
in Fig. 3(b,c) and Fig. 4(c) of the main text, (8) show how our formalism can incorporate previous 
predicted limits on nanoparticle scattering, thin film absorption, and thermal absorption, (9) show 
how the channel-based approach underestimates potential responses from the cutoff channels. 
We provide real-space expressions for the eigen-expansions of imaginary part of the electric Green’s 
function operator for (10) a sphere and (11) a planar film. We (12) summarize expressions for upper 
bounds on three power quantities at different generality, with additional applications for (13) local 
density of states manifested from near field interaction and (14) thermal absorption and emission 
from incoherent sources.

1. THE OPTIMIZATION PROBLEM AND ITS DUAL FUNC-
TION

The optimization problem is to maximize a response function
f (φ) = φ†Aφ + Im

[
β†φ

]
under the optical theorem constraint,

where the variable φ is polarization current induced in the scat-
terer. Under a prespecified basis, parameter β is a vector, and A

is a Hermitian matrix. The same basis defines positive semidefi-
nite matrix Im Γ0 and Im ξ, representing radiative and material
loss in the system. Following the standard optimization notation,
we rewrite the original maximization problem as a minimization
problem by adding a minus sign to the objective function:

minimize
φ

− f (φ) = −φ†Aφ− Im
[

β†φ
]

subject to φ† {Im ξ + Im Γ0} φ = Im
[
ψ†

incφ
]

.
(S1)

The optimization problem stated in Eq. (S1) is known to have
strong duality [1], prompting us to find its dual function, which
in turn is defined by its Lagrangian:

L(φ, ν) = φ†B(ν)φ− Im
[
(β + νψinc)

†φ
]

, (S2)

where we introduce dual variable ν and simplify our notation
by introducing matrix

B(ν) = −A + ν(Im ξ + Im Γ0). (S3)

The dual function g(ν) is defined as the minimum of La-
grangian L(φ, ν) over variable φ. We denote ν0 as the value
of ν when the minimum eigenvalue of B(ν) is zero, leaving
B(ν0) a positive semidefinite matrix with at least one zero
eigenvalue. For ν < ν0, the positivity of Im ξ + Im Γ0 im-
plies that B(ν) = B(ν0) − (ν0 − ν)(Im ξ + Im Γ0) has nega-
tive eigenvalues and L(φ, ν) is unbounded below. For ν > ν0,
B(ν) = B(ν0) + (ν− ν0)(Im ξ + Im Γ0) is positive definite, and
L(φ, ν) is convex in φ with a finite minimal value. This minimum
is obtained at

φ(ν) =
i
2

B−1(ν)(β + νψinc), (S4)

with the resulting dual function:

g(ν) = min
φ

L(φ, ν) =

{
− 1

4 (β + νψinc)
†B−1(ν)(β + νψinc) ν > ν0

−∞ ν < ν0.
(S5)
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Lastly, at ν = ν0, if β + ν0ψinc is in the range of B(ν0), then
L(φ, ν) is still convex and g(ν0) takes the value of the first case
in Eq. (S5) with the inverse operator replaced by the pseudo-
inverse; if not, then Eq. (S2) suggests that L(φ, ν) is unbounded
below and g(ν0)→ −∞.

Due to strong duality, the optimization problem, Eq. (S1), is
solved by finding the maximum of the dual function:

maximize
ν

g(ν), (S6)

According to Eq. (S5), dual function g(ν) is maximized at a value
within range [ν0,+∞), which we denote as ν∗. The maximum
response function takes the (negative of the optimal dual) value:

fmax =
1
4
(β + ν∗ψinc)

†B−1(ν∗)(β + ν∗ψinc), (S7)

and the optimal polarization current φ is given by evaluating
Eq. (S4) at ν∗:

φ∗ =
i
2

B−1(ν∗)(β + ν∗ψinc), (S8)

except when ν∗ = ν0, where the φ∗ can not be uniquely deter-
mined due to the presence of zero eigenvalues in B(ν0).

To solve for the maximum response function fmax in Eq. (S7),
we need to find the optimal dual variable ν∗, which can only
occur either in the interior of the domain [ν0, ∞) or its boundary.
If ν∗ is in the interior, it has to satisfy the condition:

∂g(ν)
∂ν

∣∣∣∣
ν=ν∗

= 0. (S9)

This can be translated to a transcendental equation that deter-
mines the first possible optimum which we denote as ν1:

2 Re
{

ψ†
incB−1(ν1)(β + ν1ψinc)

}
−(β + ν1ψinc)

†B−1(ν1)B
′(ν1)B

−1(ν1)(β + ν1ψinc) = 0.
(S10)

The concavity of the dual function g(ν) guarantees the unique-
ness of the solution ν1. The lefthand side of Eq. (S10) is pro-
portional to −∂g(λ)/∂ν. Its derivative, −∂2g(λ)/∂ν2, is always
non-negative based on the second-order condition of a concave
function [1]. Thus, if there is a ν1 satisfying Eq. (S10), it can
simply be solved by identifying where the sign of the lefthand
side changes, using either bisection or Newton’s method.

Based on the concavity of the dual function, we can also argue
that if ν1 exists in the domain (ν0, ∞) then it must be the global
optimizer of g(ν). If not, then there is no point in the domain at
which the gradient is zero, and ν∗ must be one of the boundary
values of [ν0, ∞); by the concavity of g(ν), the maximum must
occur at ν0. Hence we have:

ν∗ =

{
ν1 if ν1 ∈ (ν0, ∞)

ν0 else.
(S11)

The self-consistency implicit in Eq. (S10) for ν1 can make it to
difficult to ascertain whether ν1 or ν0 is optimal. Instead, if the
derivative of g(ν) at ν0 is well-defined, we can check its value to
determine whether g(ν) attains it extremum in the interior of its
domain or on its boundary: if and only if it is positive, then ν1
will be in the interior of the domain [ν0, ∞). Hence, if β + ν0ψinc

is in the range of B−1(ν0), then we can also use the equivalent
condition to determine ν∗:

ν∗ =


ν1 if 2ψ†

incB−1(ν0)(β + ν0ψinc)

< (β + ν0ψinc)
†B−1(ν0)B

′(ν0)B
−1(ν0)(β + ν0ψinc)

ν0 else.
(S12)

2. ABSORBED, SCATTERED, AND EXTINGUISHED
POWER EXPRESSIONS

We start with extinguished power which is linear in polariza-
tion current φ: Pext =

ω
2 Im

[
ψ†

incφ
]
. For simplicity, we take the

objective function as Im
[
ψ†

incφ
]
, and set A = 0 and β = ψinc

in the optimization problem, Eq. (S1). The matrix defined in
Eq. (S3) becomes B(ν) = ν(Im ξ + Im Γ0). Its minimum eigen-
value reaches zero when ν = ν0 = 0. Dual function in Eq. (S5)
takes the form:

g(ν) =

{
− (ν+1)2

4 ψ†
inc(Im ξ + Im Γ0)

−1ψinc ν > 0
−∞ ν ≤ 0,

(S13)

where we identified g(ν0) = −∞ since β + ν0ψinc is not in the
range of B(ν0). Since g(ν0) = −∞, the optimal dual variable ν∗

can only be chosen at ν1. Solving Eq. (S10) gives ν1 = 1 and the
maximum extinction given by Eq. (S7) is (after adding back the
ω
2 prefactor):

Pmax
ext =

ω

2
ψ†

inc (Im ξ + Im Γ0)
−1 ψinc. (S14)

The optimum polarization current φ∗ is given by Eq. (S8):

φ∗ = i(Im ξ + Im Γ0)
−1ψinc. (S15)

Absorption has the form Pabs = ω
2 φ†(Im ξ)φ. Taking the

objective function as φ†(Im ξ)φ, we have A = Im ξ and β = 0
in the optimization problem, Eq. (S1). The matrix defined in
Eq. (S3) becomes B(ν) = (ν− 1) Im ξ + ν Im Γ0. Dual function
takes the form of Eq. (S5):

g(ν) =

{
− ν2

4 ψ†
inc[(ν− 1) Im ξ + ν Im Γ0]

−1ψinc ν > ν0

−∞ ν < ν0,
(S16)

At ν = ν0, the value of g(ν0)→ −∞ if ψinc is not in the range of
B(ν0), otherwise g(ν0) takes the form of the first case in Eq. (S16)
with the inverse replaced by pseudo-inverse. As in Eq. (S11), the
optimal dual variable ν∗ is obtained either at the interval (ν0, ∞)
or its boundary ν0. The value of ν0 depends on the nature of
both Im ξ and Im Γ0. The value of ν1 is given by Eq. (S10):

ψ†
inc

[
2B−1(ν1)− ν1B−1(ν1)(Im ξ + Im Γ0)B

−1(ν1)
]

ψinc = 0.
(S17)

Using Eq. (S7) and adding back the ω
2 prefactor, we have maxi-

mum absorption:

Pmax
abs =

ω

2
ν∗2

4
ψ†

inc[(ν
∗ − 1) Im ξ + ν∗ Im Γ0]

−1ψinc. (S18)

The optimal current can be determined by Eq. (S8) in the case of
ν∗ = ν1:

φ∗ = i
ν∗

2
[(ν∗ − 1) Im ξ + ν∗ Im Γ0]

−1ψinc. (S19)
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Scattering power has the form Pscat = ω
2 φ†(Im Γ0)φ, such

that A = Im Γ0 and β = 0 after suppressing the ω
2 prefactor.

Following a similar procedure as absorption, we have maximum
scattering as:

Pmax
scat =

ω

2
ν∗2

4
ψ†

inc[ν
∗ Im ξ + (ν∗ − 1) Im Γ0]

−1ψinc. (S20)

Again, ν∗ takes two possible values: ν1 and ν0, as dictated by
Eq. (S11). The determinant equation for ν1 takes the same form
as Eq. (S17) with B(ν) = ν Im ξ + (ν− 1) Im Γ0.

An equivalent formulation for all three power quantities is to
write them as the difference (or sum) of the other two. For exam-
ple, scattering power can be written as the difference between
extinction and absorption: Pscat =

ω
2 Im

[
ψ†

incφ
]
− ω

2 φ†(Im ξ)φ.
With A = − Im ξ and β = ψinc after suppressing the ω

2 prefactor,
this gives the same optima as in Eq. (S20) but with a different
form:

Pmax
scat =

ω

2
(1 + ν∗)2

4
ψ†

inc [(ν
∗ + 1) Im ξ + ν∗ Im Γ0]

−1 ψinc,

(S21)

where the optimal dual variable ν∗ is determined by Eq. (S11).

3. BOUND FOR A NONMAGNETIC SCALAR MATERIAL
UNDER PLANE WAVE INCIDENCE

Let us consider a typical case where the incident field is a plane
wave and the scatterer is composed of nonmagnetic scalar mate-
rial. Here, we only need to consider the electric response in Eq.
(S14, S18, S20), so we can replace ψinc with einc, Γ0 with GEE

0 , and
ξ = Im χ/|χ|2 is now a scalar with χ being the electric suscepti-
bility of the material. Because Im GEE

0 is positive-semidefinite,
we can simplify its eigendecomposition to write Im GEE

0 = VV†,
where the columns of V, which we denote vi, form an orthogo-
nal basis of polarization currents. They are normalized such that
the set ρi = v†

i vi are the eigenvalues of Im GEE
0 and represent

the powers radiated by unit-normalization polarization currents.
The expansion of incident plane wave, einc, in these channels
is assumed to be: einc = 1

k3/2 ∑i eivi, where the exact value of
|ei|2 depends on the choice of vi. Throughout the SM, we use
uncapitalized symbol einc to denote the incident electric field to
emphasis its vector nature.

We decompose general bounds given by Eq. (S14, S18, S20)
into contributions from these channels:

Pext ≤
ω

2
1
k3 ∑

i
|ei|2

ρi
Im ξ + ρi

(S22)

Pabs ≤
ω

2
ν∗2

4
1
k3 ∑

i
|ei|2

ρi
(ν∗ − 1) Im ξ + ν∗ρi

(S23)

Pscat ≤
ω

2
ν∗2

4
1
k3 ∑

i
|ei|2

ρi
ν∗ Im ξ + (ν∗ − 1)ρi

. (S24)

Taking ω = k in our unitless convention and write k = 2π/λ
gives the expressions presented in the main text. Bounds for
both absorption and scattering contain ν∗, which is determined
by Eq. (S11). For absorption, ν0 = 1, and ν1 is computationally
evaluated by solving the following equation:

∑
i
|ei|2

(ν1 − 2) Im ξ + ν1ρi
[(ν1 − 1) Im ξ + ν1ρi]2

= 0. (S25)

For scattering bound, ν0 = ρmax/(ρmax + Im ξ), where ρmax
is the largest ρi. The other potential optimum, ν1, is solved
computationally through equation:

∑
i
|ei|2ρi

(ν1 − 2)ρi + ν1 Im ξ

[(ν1 − 1)ρi + ν1 Im ξ]2
= 0. (S26)

Bounds on maximal cross sections for a finite-size scatterer is
obtained by normalizing Eqs. (S22)–(S24) by plane wave inten-
sity |E0|2/2 (the vacuum resistance Z0 = 1):

σext ≤
λ2

4π2|E0|2 ∑
i
|ei|2

ρi
Im ξ + ρi

(S27)

σabs ≤
λ2

4π2|E0|2
ν∗2

4 ∑
i
|ei|2

ρi
(ν∗ − 1) Im ξ + ν∗ρi

(S28)

σscat ≤
λ2

4π2|E0|2
ν∗2

4 ∑
i
|ei|2

ρi
ν∗ Im ξ + (ν∗ − 1)ρi

. (S29)

For a plane wave incidence with |ei|2 = π(2n + 1)δm,±1|E0|2,
we can simplify the above expression by summing over index m
within i = {m, n, j}, leaving contributions indexed only by total
angular momentum n and polarization state j:

σext ≤
λ2

2π ∑
n,j
(2n + 1)

ρn,1,j

Im ξ + ρn,1,j
(S30)

σabs ≤
λ2

2π

ν∗2

4 ∑
n,j
(2n + 1)

ρn,1,j

(ν∗ − 1) Im ξ + ν∗ρn,1,j
(S31)

σscat ≤
λ2

2π

ν∗2

4 ∑
n,j
(2n + 1)

ρn,1,j

ν∗ Im ξ + (ν∗ − 1)ρn,1,j
. (S32)

In Fig. 2(c) of the main text, we use the notation σext,n to denote
the contribution from the n-th channel in the summation of
Eq. (S30).

4. GENERAL BOUND FOR EXTENDED SCATTERERS

We assume the material is isotropic, nonmagnetic, and homo-
geneous so the extended scatterer only has electric response to
the incident field. The most general far-field incidence has the
expansion in its electric field:

einc =
1

k3/2 ∑
i

∫
k‖≤k

ei(k‖)vi(k‖)
dk‖
(2π)2 , (S33)

where index i = {s, p}. Plugging the expansion of einc in
Eq. (S14, S18, S20) gives the integral form of cross-sections
bounds after normalization by the z-directed plane wave inten-
sity |E0|2kz/2k:

σext ≤
1

kkz|E0|2 ∑
i

∫
k‖≤k
|ei(k‖)|2

ρi(k‖)
Im ξ + ρi(k‖)

dk‖
(2π)2

(S34)

σabs ≤
1

kkz|E0|2
ν∗2

4

∑
i

∫
k‖≤k
|ei(k‖)|2

ρi(k‖)
(ν∗ − 1) Im ξ + ν∗ρi(k‖)

dk‖
(2π)2 (S35)

σscat ≤
1

kkz|E0|2
ν∗2

4

∑
i

∫
k‖≤k
|ei(k‖)|2

ρi(k‖)
ν∗ Im ξ + (ν∗ − 1)ρi(k‖)

dk‖
(2π)2 .

(S36)



Supplementary Material 4

Now we restrict our scope to a plane wave incidence with
total wave vector k = kxêx + kyêy + kzêz and polarization p′. We
denote its parallel wave vector as k′‖ = kxêx + kyêy where the ′

symbol differentiates k′‖ from k‖ that is used to label different
channels in Eq. (S33). The plane wave has the expression:

einc = E0êeik′‖ ·r‖ eikzz, (S37)

where ê is a unit vector denotes incident polarization, taking
the form (kyêx − kxêy)/k′‖ for p′ = M, and (−kzk̂′

‖ + k′‖êz)/k
for p′ = N. Equating Eq. (S37) with Eq. (S33) gives the
expansion coefficients, ei(k‖). Plugging its absolute value
|ei(k‖)| = |E0|

√
2kzk(2π)2δ(k′‖ − k‖)δp,p′ into Eqs. (S34)–(S36)

gives bounds for plane wave incidence:

σext/A ≤ 2 ∑
s=±

ρs,p′ (k
′
‖)

Im ξ + ρs,p′ (k
′
‖)

(S38)

σabs/A ≤ ν∗2

2 ∑
s=±

ρs,p′ (k
′
‖)

(ν∗ − 1) Im ξ + ν∗ρs,p′ (k
′
‖)

(S39)

σscat/A ≤ ν∗2

2 ∑
s=±

ρs,p′ (k
′
‖)

ν∗ Im ξ + (ν∗ − 1)ρs,p′ (k
′
‖)

, (S40)

where we identified factor A = (2π)2δ2(0) corresponding to
total surface area.

Bounds for both absorption and scattering contain ν∗, which
is determined by Eq. (S11). For absorption, ν0 = 1, and ν1 is
computationally evaluated by solving the following equation:

∑
s=±

(ν1 − 2) Im ξ + ν1ρs,p′ (k
′
‖)[

(ν1 − 1) Im ξ + ν1ρs,p′ (k
′
‖)
]2 = 0. (S41)

For scattering, ν0 = ρmax/(ρmax + Im ξ), where ρmax is the
largest ρi. The other potential optimum, ν1, is solved computa-
tionally through equation:

∑
s=±

ρs,p′ (k
′
‖)

(ν1 − 2)ρs,p′ (k
′
‖) + ν1 Im ξ[

(ν1 − 1)ρs,p′ (k
′
‖) + ν1 Im ξ

]2 = 0. (S42)

5. MINIMUM THICKNESS FOR PERFECT ABSORBERS

Following Section IV in the SM, this section studies minimum
thickness required for a perfect absorber that has 100% absorp-
tion. Usually, one determines the optimal ν∗ in Eq. (S39) by
comparing the values of ν0 and ν1. Here, we take an alternative
approach introduced through Eq. (S12), where the derivative of
the dual function at ν0 is used as a threshold, giving a explicit
expression for maximum absorption cross section:

σabs/A (S43)

≤


ν2

1
2 ∑s=±

ρs,p′ (k
′
‖)

(ν1−1) Im ξ+ν1ρs,p′ (k
′
‖)

, 1
Im ξ > 1

2

[
1

ρ+,p′ (k‖)
+ 1

ρ−,p′ (k‖)

]
1, otherwise.

(S44)

Threshold for maximum absorption (at a given incident angle)
corresponds to the condition:

1
Im ξ

=
1
2

[
1

ρ+,p′ (k‖)
+

1
ρ−,p′ (k‖)

]
, (S45)

0 5 10 15 20
0

0.5

h
m

in
 /

 
p

general bound

skin depth

0 5 10 15 20

Wavelength / plasmonic wavelength,  / 
p

0

2

4

h
m

in
 /

 
p

10
-3

material-loss bound

Fig. S1. Comparison between skin depth and minimum thick-
ness, hmin, for a perfect absorber as a function of wavelength λ
for a Drude metal. General bound and material-loss bound are
shown seperately in two plots. The former one gives a much
more modest prediction. All quantities are normalized by the
plasmonic wavelength, λp, of the Drude metal.

where we can solve for its required minimum thickness:

hmin =
kz

k2
4 Im ξ

1− sinc2(kzhmin)
. (S46)

Under normal incidence (kz = k), when the absorber is much
thinner than the wavelength, khmin → 0, it can be shown that:

khmin = (24 Im ξ)1/3. (S47)

This prodicts a much more modest improvement over reduced
material loss, compared with previous material-loss bound [2]
where the expression for minimum thickness under normal inci-
dence is khmin = Im ξ. Fig. S1 shows that this contrast is on the
order of 102 for a Drude metal modeled by permittivity

ε(ω) = −
ω2

p

ω2 + iγω
, (S48)

with loss rate γ = 0.02ωp. Plasmonic wavelength is λp =
2πc/ωp, with c = 1 being the speed of light in our unitless
convention.

It is also shown in Fig. S1 that, minimum thickness predicted
by the general bound is on the same length scale as skin depth
in the metal [3] near plasmonic wavelength, λp. For λ < λp,
there is no surface plasmonic mode inside a Drude metal and
skin depth is ill-defined, though it is still possible to realize a
perfect absorber according to the general bound. For λ > λp,
while both skin depth and material-loss bound reach a plateau
at large wavelength limit, general bound has hmin increases
proportionally to wavelength. This comes from the effectively
thinner material under large wavelength incidence and explains
the behavior of Al in Fig. 4(a) of the main text.

6. INVERSE DESIGN PROCEDURES FOR PERFECT AB-
SORBERS

In Fig. 3(b,c) and Fig. 4(c) of the paper, we showed examples
of maximum absorption of topology-optimized metasurfaces
with subwavelength periodicity, which are generally within
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70% of the bounds, and therefore confirming our bounds to
be tight or nearly so. Here we present the details of the topology
optimization procedures. Given the permittivity of the material
εm, using a material density function αi, with the subscript i
standing for its spatial coordinate, αi = 1 meaning material and
αi = 0 meaning air at pixel i, then the design problem of perfect
absorbers is formulated as a maximization of the absorption
cross section over all permissible choice of αi at each pixel i:

maximize
ε i

σabs

subject to εi = 1 + αi(εm − 1),

αi ∈ [0, 1],

(S49)

and the absorption cross section as function of the field ψ is
given by σabs(ψ) =

1
A
∫

V
ω
2 ψ† Im χ

|χ|2 ψ, where A is the unit cell area.
The Maxwell constraint, i.e. that all solutions satisfy Maxwell
equations is implied.

Global optimization methods tend not to provide reason-
able convergences with such large dimensionality of the prob-
lem. Hence local optimizations with random initial starting
points were tested to approach the global bounds. Fast calcula-
tions of the gradients ∂σabs/∂αi are facilitated with the adjoint
method [4]. Following the volume-integral formalism, one can
take the variation of any generic figure of merit f (ψ) due to
changes in the susceptibility ∆χ:

δ f = 2 Re
∫

V
(δψ)T ∂ f

∂ψ
. (S50)

Considering that the perturbed field:

δψ(x) =
∫

V
Γ0(x, x′)∆χ(x′)ψ(x′). (S51)

The total variation can be written as:

δ f = 2 Re
∫

V

∫
V

ψ(x′)T∆χ(x′)ΓT
0 (x, x′)

∂ f
∂ψ(x)

. (S52)

Using reciprocity relations, ΓT
0 (x, x′) = QTΓ0(x′, x)Q, where

Q =

1 0

0 −1

 is the parity operator. Then by rearranging, the

variation in the figure of merit is given by

δ f = 2 Re
∫

V
ψ(x′)T∆χ(x′)Q

∫
V

Γ(x′, x)Q
∂ f

∂ψ(x)
. (S53)

Now one can define the adjoint field ψadj(x′) =∫
V Γ(x′, x)Q ∂ f

∂ψ(x) , which is essentially fields resulting from the

current sources, the so-called adjoint sources, φadj = Q ∂ f
∂ψ . In

the case of absorption cross-section σabs, the adjoint sources are
given by

φadj =
1
A

ω

2
Im χ

|χ|2 Qψ?, (S54)

and so the variation in σabs is

δσabs = 2 Re
∫

V
ψ(x′)T∆χ(x′)Qψadj(x′). (S55)

Hence the fields ψ from the prescribed structure with direct
incidence plus the adjoint fields ψadj provide the gradients with
respect to any number of design variables. Numerically, in each
iteration of the topology optimizations, one direct simulation

to compute ψ and another simulation with φadj as sources to
compute ψadj are need.

The simulations are performed with a finite-difference time-
domain [5] open-source solver [6]. In all design figures below,
periodic conditions are imposed in the horizontal direction, and
light is incident from below and propagating upward. For all
sets of hyper-parameters, including material permittivities and
thicknesses, we test at least 10 initial starting points, and run
simulations with resolutions up to 110 grids per wavelength.
Almost all optimizations converge within 700 iterations, and we
show below the evolution of σabs in 1.2 µm-thick SiC absorber
optimization.
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Fig. S2. Percent absorption as a function the number of iter-
ations for the best design optimization of 1.2 µm-thick SiC
absorber.

7. OPTIMIZED DESIGNS

A. Different thicknesses of SiC absorbers at11 µm wavelength

As an example, we investigated absorber inverse designs with
SiC at 11 µm wavelength and a range of thicknesses. The res-
olution is 0.1 µm, and unit cell period is 1.1 µm. Their percent
absorption and designs are presented in Table S3.

B. Minimum thicknesses of 70% absorbers for different mate-
rials

Thinnest perfect absorbers are designed for different types of
materials, such as metals, doped semiconductors and polar di-
electrics. In Table S4, we demonstrate designs of six representa-
tive materials at different wavelengths where 70% absorption is
achieved with minimum thicknesses of the metasurfaces.

8. DERIVING PREVIOUS BOUNDS FROM GENERAL
BOUND FORMALISM

Different derivations of upper bounds can be formulated as
optimization problems with same objective functions but dif-
ferent constraints. In this section, we showed that how the
general bound, developed in this paper, can incoorperate previ-
ous bounds by either relaxing the energy equality constraint, or
taking the result of the general bound in certain limit.
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Extinction Absorption Scattering

General bound
max. Pext

s.t. Pscat + Pabs = Pext

max. Pabs
s.t. Pscat + Pabs = Pext

max. Pscat
s.t. Pscat + Pabs = Pext

Material bound [2]
max. Pext

s.t. Pabs ≤ Pext

max. Pabs
s.t. Pabs ≤ Pext

max. Pext − Pabs

Channel bound [7]
max. Pext

s.t. Pscat ≤ Pext
max. Pext − Pscat

max. Pscat
s.t. Pscat ≤ Pext

Table S1. Upper bounds as optimization problems with the same objective function but different constraints. General bound
uses an equality energy constraint, while the other two relax it to inequality constraints (or even unconstrained), resulting looser
bounds.

Extinction Absorption Scattering

General bound ψ†
inc (Im ξ + Im Γ0)

−1 ψinc
ν∗2

4 ψ†
inc[(ν

∗ − 1) Im ξ + ν∗ Im Γ0]
−1ψinc

ν∗2

4 ψ†
inc[(ν

∗ − 1) Im ξ + ν∗ Im Γ0]
−1ψinc

Material bound [2] ψ†
inc(Im ξ)−1ψinc ψ†

inc(Im ξ)−1ψinc
1
4 ψ†

inc(Im ξ)−1ψinc

Channel bound [7] ψ†
inc(Im Γ0)

−1ψinc
1
4 ψ†

inc(Im Γ0)
−1ψinc ψ†

inc(Im Γ0)
−1ψinc

Table S2. Optimum of different upper-bound formulations presented in Table S1. Optimal dual variable of the general bound is
determined by Eq. (S11).

channel and material loss bounds Table S1 compares general
bound with material-loss bound (material bound) and channel
bound. General bound purposed in this paper utilizes the equal-
ity energy conservation constraint: Pscat + Pabs = Pext. Throwing
away either Pscat or Pabs gives the inequality energy conserva-
tion constraint used in previous material bound [2] or channel
bound [7]. In both formalisms, the disregarded term itself is
treated by an unconstrained optimization.

All optimization problems in Table S1 have strong duality,
thus their optimums can be analytically determined by the opti-
mal of their dual functions, given in Table S2 (with prefactor ω/2
suppressed in every expression). Results for material bound ap-
pears in [2]. Results for channel bound appears in [7]. Moreover,
expanding channel bound into VSWs for a spherical scatterer
gives the expressions in [8–11] (after adding back prefactor ω/2):

Pmax
scat = Pmax

ext = 4Pmax
abs = |E0|2

k2 ∑+∞
n=1 π(2n + 1), where E0 is the

plane wave amplitude, k is the amplitude of the wave vector,
and n is total angular momentum.

T-operator bound As discussed in Section 14 in the SM, our
bound is tighter than T-operator bound [12] for maximum ab-
sorption from a thermal incident field. Though using differ-
ent approaches, the general bound can reproduce the same
result as in T-operator bound by relaxing the energy con-
straint to Pabs ≤ Pext and replacing objective function Pabs with
Pext − Pscat:

maximize Pext − Pscat

subject to Pabs ≤ Pext.
(S56)

Similar to Section I in the SM, we solve Eq. (S56) by its dual
function:

g(λ) =
(λ + 1)2

4
ψ†

inc [Im Γ0 + λ Im ξ]−1 ψinc, (S57)

where λ is the notation used in [1] to denote dual variable for an
inequality constraint. The range for λ is [0,+∞). When λ = 0,
the inverse operator in Eq. (S57) is ill-defined and we replace it

with pseudo inverse if ψinc ∈ Range{Im Γ0}, otherwise g(0)→
−∞

Following assumptions made in T-operator bound, we as-
sume far-field thermal incidence and nonmagnetic material,
where ψinc and Γ0 is replaced by einc and GEE

0 . As discussed
in Section IV in the main text, thermal incident field can be ex-
panded by a set of uncorrelated orthogonal fields. We choose
it to be {vi}, the eigenvectors of Im GEE

0 , with expansion coeffi-
cients given by |ei|2 = 4

πω Θ(T) and Θ(T) = h̄ω/(eh̄ω/kBT − 1)
is the Planck energy of a harmonic oscillator at temperature T.

Maximizing g(λ) gives the expression for optimal absorption
of thermal incident fields in [12]:

Pabs ≤
2
π

Θ(T)∑
i

{
ρi

Im ξ for 2ρi ≤ Im ξ
1
4 for 2ρi ≥ Im ξ,

(S58)

where two cases correspond to optimal dual variable taking the
value of either ν1 ∈ (0,+∞) or ν0 = 0. Such a bound is looser
than the general bound presented in Section 14 of the SM, as a
result of its inequality energy constraint in Eq. (S56), rather than
the equality energy constraint.

patterned thin film bound It is predicted that within a vacuum
background, a patterned thin film with thickness much smaller
than the incident wavelength has a maximum absorption of
50% [13]. To validate this, we take the limit kzh→ 0 in Eq. (S44)
and obtain:

σabs/A ≤
2(Im ξ)ρ+,p′

(Im ξ + ρ+,p′ )2 . (S59)

Because a thin film only has dipole radiation that is symmetric
respect to the z = 0 plane, only mode with index s = + survived
in Eq. (S59).

When Im ξ = ρ+,M, the absorption rate σabs/A in Eq. (S59)
reaches its maximum of 50%, agreeing with the prediction made
in [13]. The advantage of our formalism is that we can also
predict the minimum thickness for the patterned thin film to
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Fig. S3. Per-channel extinction σext,n for material Ag in a
spherical bounding volume with radius R = 10λ at wave-
length λ = 360 nm. Compared to the general bound, the 1%
cutoff threshold excludes channels whose potential contri-
butions are marked by the red shaded region, resulting in an
underestimated channel bound.

reach 50% absorption: hmin = 2 Im ξ/k, as solved from the
optimal condition Im ξ = ρ+,M.

9. UNDERESTIMATION OF THE CHANNEL BOUNDS
FROM CUTOFF CHANNELS

The channel bounds shown in Table S2 are in fact infinite for
a plane wave incident. Physically, this is due to the negligible
radiative loss in high-order VSW channels, corresponding to the
eigenvectors of Im Γ0 with near-zero eigenvalues. To regularize
such divergence, one needs to truncate its radiation channels to
a finite number based on certain threshold. Such an empirical
truncation is certainly a disadvantage of the channel bound,
moreover, as we will show below, it also introduces unwanted
underestimation of the channel bound itself.

As an example, Fig. S3 shows channel bounds for per-channel
extinction σext,n within a bounding volume of radius R = 10λ.
The material is Ag and incident wavelength λ = 360 nm. Also
shown in the same figure are the general bound and spherical
scattering. As expected, the channel bound diverges at high-
order radiative channels, and is regularized by a 1% cutoff line,
which excludes channels for which the sphere scattering contri-
butions are less than 1% of the channel bound.

Compared with the general bound, we see that the potential
contribution of those excluded channels (red shaded region), are
ignored by the 1% threshold. Such an underestimation results in
a seemly tighter bound in Fig. 2 of the paper at large radius limit.
Of course, the 1% threshold is empirical. One could reduce the
threshold to eliminate the unwanted underestimation, but that
usually results in an overall overestimation of the channel bound
since more channels are now included without the inhibition of
material loss. We found 1% is a good empirical threshold for
estimating the channel bound.

10. THE IMAGINARY PART OF THE GREEN’S FUNC-
TION OPERATOR FOR A SPHERE

The expressions of Im GEE
0 is given in [14], whose imaginary part

is Hermitian and can be decomposed as:

Im GEE
0 =

1
2i
(GEE

0 −GEE†
0 ) = ∑

n,m,j
vn,m,jv

†
n,m,j, (S60)

where n = 1, 2, ..., m = −n, ..., n, j = 1, 2 represents two polariza-
tions. vn,m,j are reguarized VSWs whose definition can be found
in [14]:

vn,m,1(x) = k
3
2 RgMn,m(kr, θ, φ) (S61)

vn,m,2(x) = k
3
2 RgNn,m(kr, θ, φ). (S62)

The inner product of vn,m,j with itself gives the eigenvalue of
Im GEE

0 :

ρn,m,j = v†
n,m,jvn,m,j (S63)

=
∫

V
v∗n,m,j(x) · vn,m,j(x)dV. (S64)

Integrating over angular coordinates gives the expression:

ρn,m,1 =
∫ kR

0
x2 j2n(x)dx (S65)

ρn,m,2 = n(n + 1)
∫ kR

0
j2n(x)dx +

∫ kR

0
[xjn(x)]′2dx, (S66)

which can be computationally evaluated or even reduced to
simpler analytical forms [15].

11. THE IMAGINARY PART OF THE GREEN’S FUNC-
TION OPERATOR FOR A FILM

As in [14, 16], Im GEE
0 in Cartesian coordinate can be decom-

posed into a complete set of plane waves:

Im GEE
0 = ∑

s,p

∫
k‖≤k

vs,p(k‖)v
†
s,p(k‖)

dk‖
(2π)2 . (S67)

Index s = {−1,+1} represents odd and even parity, index p =
M, N represents different polarization, k‖ are in-plane wave
vector whose integration only runs through propergating modes.
Real-space expressions of vs,p(k‖) are:

v+,M(k‖, x) = ik
eik‖ ·r‖
√

2kzk‖
(kyêx − kxêy) cos(kzz) (S68)

v−,M(k‖, x) = −ik
eik‖ ·r‖
√

2kzk‖
(kyêx − kxêy) sin(kzz) (S69)

v+,N(k‖, x) =
eik‖ ·r‖
√

2kz

[
k‖ cos(kzz)ẑ− ikz sin(kzz)k̂‖

]
(S70)

v−,N(k‖, x) =
eik‖ ·r‖
√

2kz

[
k‖ sin(kzz)ẑ + ikz cos(kzz)k̂‖

]
. (S71)

Inner products of vs,p(k‖) in a thin film (thickness h, centered
at z = 0) is [12]:

v†
s,p(k‖)vs′ ,p′ (k

′
‖) =

∫
V

v∗s,p(k‖, x) · vs′ ,p′ (k
′
‖, x)dV (S72)

= ρs,p(k‖)(2π)2δ(k‖ − k′‖)δs,s′δp,p′ , (S73)



Supplementary Material 8

where the eigenvalues are:

ρ±,M(k‖) =
k2h
4kz

(1± sin(kzh)
kzh

) (S74)

ρ±,N(k‖) =
k2h
4kz

(1± sin(kzh)
kzh

)∓ sin(kzh)
2

. (S75)

12. UPPER BOUNDS AT DIFFERENT GENERALITY

1. Most general form (include non-local, magnetic, inhomo-
geneous materials, any incident field, any geometry of the
scatterer):

Pext ≤
ω

2
ψ†

inc (Im ξ + Im Γ0)
−1 ψinc (S76)

Pabs ≤
ω

2
ν∗2

4
ψ†

inc[(ν
∗ − 1) Im ξ + ν∗ Im Γ0]

−1ψinc (S77)

Pscat ≤
ω

2
ν∗2

4
ψ†

inc[ν
∗ Im ξ + (ν∗ − 1) Im Γ0]

−1ψinc, (S78)

where Im ξ and Im Γ0 are matrices that depends on the exact
shape and material compositions of the scatterer.

2. Scalar material (electric or magnetic scalar material, any
incident field, any geometry of the homogeneous scatterer):

Pext ≤
ω

2
1

Im ξ

[
ψ†

incψinc − ψ†
incV(Im ξ + V†V)−1V†ψinc

]
(S79)

Pabs ≤
ω

2
ν∗2

4
ν∗

ν∗ − 1
1

Im ξ

{ 1
ν∗

ψ†
incψinc

− ψ†
incV[(ν∗ − 1) Im ξ + ν∗V†V]−1V†ψinc

}
(S80)

Pscat ≤
ω

2
ν∗2

4
ν∗ − 1

ν∗
1

Im ξ

{ 1
ν∗ − 1

ψ†
incψinc

− ψ†
incV[ν∗ Im ξ + (ν∗ − 1)V†V]−1V†ψinc

}
, (S81)

where Im ξ is a scalar represents either the isotropic electric
or magnetic susceptibility and we write the eigendecompo-
sition of Im Γ0 as Im Γ0 = VV†.

3. Isotropic electric material (electric scalar material, any in-
cident field, any geometry): same form as Eqs. (S79)–
(S81) with ψinc replaced by einc, and Γ0 replaced by GEE

0 .
Eigenbasis V is now defined by the eigendecomposition:
Im GEE

0 = VV†, with vi being the i-th column of V.

(a) For far field scattering, where the incident electric
field einc is characterized by the property einc ∈
Range{Im GEE

0 }, bounds in Eqs. (S79)–(S81) can be
dramatically simplified:

Pext ≤
ω

2
e†

inc(Im ξ + Im GEE
0 )−1einc (S82)

Pabs ≤
ω

2
ν∗2

4
e†

inc[(ν
∗ − 1) Im ξ + ν∗ Im GEE

0 ]−1einc

(S83)

Pscat ≤
ω

2
ν∗2

4
e†

inc[ν
∗ Im ξ + (ν∗ − 1) Im GEE

0 ]−1einc.

(S84)

• Plane wave incidence (applies to both finite and
extended scatterers) with einc = ∑i eivi. Explicitly
written out contributions from different channels:

Pext ≤
ω

2 ∑
i
|ei|2

ρi
Im ξ + ρi

(S85)

Pabs ≤
ω

2
ν∗2

4 ∑
i
|ei|2

ρi
(ν∗ − 1) Im ξ + ν∗ρi

(S86)

Pscat ≤
ω

2
ν∗2

4 ∑
i
|ei|2

ρi
ν∗ Im ξ + (ν∗ − 1)ρi

,

(S87)

where ρi = v†
i vi is analytically known for highly

symmetric bounding volumes.

• VSW incidence (applies to finite scatterers). Now
the incident field is one specific VSW: einc = eivi,
under which:

Pext ≤
ω

2
|ei|2

Im ξ + ρi
(S88)

Pabs ≤
ω

2
ν∗2

4
|ei|2

(ν∗ − 1) Im ξ + ν∗ρi

=

{ Im ξ
(Im ξ+ρi)2 |ei|2 if ρi ≤ Im ξ
1

4ρi
|ei|2 else

(S89)

Pscat ≤
ω

2
ν∗2

4
|ei|2

ν∗ Im ξ + (ν∗ − 1)ρi

=


ρi

(Im ξ+ρmax)2 |ei|2 if ρi ≥
ρmax Im ξ

2 Im ξ+ρmax

1
4

ρ2
max

Im ξ(ρmax+Im ξ)(ρmax−ρi)
|ei|2 else,

(S90)

where the choice of ν∗ is simple enough that we
can write out explicit two possible solutions of
Pabs and Psca. We denote the maximum in {ρi} as
ρmax.

(b) Incident field in near-field scattering is not necessar-
ily in the range of Im GEE

0 as evanescent waves may
contribute (for an extended scatter). Expression for
its bound takes the most general form as Eqs. (S79)–
(S81) with ψinc replaced by einc, and Γ0 replaced by
GEE

0 . For arbitrary dipole sources p, the incident field
can be written as einc = GEE

0,p→Vp where GEE
0,p→V is an

integral Green’s function mapped from the region of
dipole source p to the scatterer V. Taking the singular
vector decomposition of GEE

0,p→V = UW†, bounds for
near field scattering can be written as:
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Pext ≤
ω

2
1

Im ξ
p†W[U†U−U†V(Im ξ + V†V)−1V†U]W†p

=
ω

2
1

Im ξ ∑
i
|p†wi|2

(
u†

i ui −
|u†

i vi|2

Im ξ + v†
i vi

)
(S91)

Pabs ≤
ω

2
ν∗2

4(ν∗ − 1)
1

Im ξ
p†W{U†U

−U†V[(ν∗ − 1) Im ξ/ν∗ + V†V]−1V†U}W†p

=
ω

2
ν∗2

4(ν∗ − 1)
1

Im ξ

∑
i
|p†wi|2

(
u†

i ui −
|u†

i vi|2

(ν∗ − 1) Im ξ/ν∗ + v†
i vi

)
(S92)

Pscat ≤
ω

2
ν∗

4
1

Im ξ
p†W{U†U

−U†V[ν∗ Im ξ/(ν∗ − 1) + V†V]−1V†U}W†p

=
ω

2
ν∗

4
1

Im ξ ∑
i
|p†wi|2

(
u†

i ui −
|u†

i vi|2

ν∗ Im ξ/(ν∗ − 1) + v†
i vi

)
.

(S93)

13. BOUND FOR LOCAL DENSITY OF STATES (LDOS)

General bounds for LDOS We start with the expressions of total,
non-radiative, radiative electric LDOS in their volume integral
form [2]:

ρtot = ρ0 +
1

πω ∑
j

Im
(

ψ̃†
inc,jφj

)
(S94)

ρnr =
1

πω ∑
j

φ†
j (Im ξ)φj (S95)

ρrad = ρ0 +
1

πω ∑
j

[
Im
(

ψ̃†
inc,jφj

)
− φ†

j (Im ξ)φj

]
, (S96)

where ρ0 is the electric LDOS of the background material, and
takes the value of ω2

2π2c3 for a scatterer in the vacuum [17]. Sum-
mation j = 1, 2, 3 denotes power quantities from three orthog-
onally polarized unit dipoles. Incident field from dipole j is
denoted by ψinc,j = (einc,j, hinc,j). Here we use lowercase no-
tations for both electric and magnetic fields to emphasis their
vector nature, as opposed to capitalized characters that are usu-
ally reserved for operators and matrices. Such incident field
excites polarization current φj in the scatterer. Complex conju-
gate of ψinc,j (with a minus sign in front of magnetic fields) is
denoted by ψ̃inc,j = (e∗inc,j,−h∗inc,j).

Because three dipoles are uncorrelated, we can first solve the
bound for one unit dipole. For simplicity, we omit its index j and
write its incident field as ψinc, which excites polarization current
φ in the body. For this dipole, its non-radiative LDOS can be
bounded by maximum absorption in Eq. (S18) by identifying the
objective function as φ†(Im ξ)φ. Bounds on total and radiative
LDOS are less straightforward and are discussed below.

Objective function for total LDOS is Im
(
ψ̃†

incφ
)

with energy
conservation constraint φ† (Im ξ + Im Γ0) φ = Im

(
ψ†

incφ
)
. This

echos with Eq. (S1) with A = 0 and β = ψ̃inc. Its maximum is
given by Eq. (S7):

max
φ

{
Im
(

ψ̃†
incφ

)}
=

1
4ν∗

(ψ̃inc + ν∗ψinc)
† (Im ξ + Im Γ0)

−1 (ψ̃inc + ν∗ψinc),
(S97)

where the optimal dual variable ν∗ is always chosen at ν1 >
ν0 = 0 given by Eq. (S10):

ν∗ = ν1 =

[
ψ̃†

inc (Im ξ + Im Γ0)
−1 ψ̃inc

ψ†
inc (Im ξ + Im Γ0)

−1 ψinc

] 1
2

. (S98)

For non-magnetic scatterer, the above expression can be sig-
nificantly simplified. No magnetic current can be excited in
the non-magnetic scatterer such that M = 0. Examining the
object function Im

(
ψ̃†

incφ
)
, we can find that it is equivalent to

set hinc = 0. Equation (S98) gives ν∗ = 1 and the maximum
objective function for non-magnetic scatterer can be simplified
to:

max
φ

{
Im
(

ψ̃†
incφ

)}
= [Re einc]

†
(

Im ξ + Im GEE
0

)−1
[Re einc]

(S99)

≤ e†
inc

(
Im ξ + Im GEE

0

)−1
einc (S100)

=
2
ω

Pmax
ext . (S101)

where in the last two lines, we relax the bound to the maximum-
extinction bound given in Eq. (S14) with the same assumption
of non-magnetic scatterer.

Objective function for radiative LDOS defined in Eq. (S96)
can be chosen as Im

(
ψ̃†

incφ
)
− φ†(Im ξ)φ. Thus, A = − Im ξ,

β = ψ̃inc. Maximal objective function given be Eq. (S7) can be
written as:

max
φ

{
Im
(

ψ̃†
incφ

)
− φ†(Im ξ)φ

}
=

1
4
(ψ̃inc + ν∗ψinc)

† [(ν∗ + 1) Im ξ + ν∗ Im Γ0]
−1 (ψ̃inc + ν∗ψinc)

(S102)
with optimal dual variable ν∗ given by Eq. (S11). For non-
magnetic scatterer (effectively hinc = 0 in Eq. (S102)), bound in
Eq. (S102) reduces to:

max
φ

{
Im
(

ψ̃†
incφ

)
− φ†(Im ξ)φ

}
=

1
4
(ẽinc + ν∗einc)

†
[
(ν∗ + 1) Im ξ + ν∗ Im GEE

0

]−1
(ẽinc + ν∗einc).

(S103)
Radiative LDOS bound in Eq. (S103) can be relaxed to scattering
bound in Eq. (S21) by observing that the dual function of the
former, g1(ν), is always greater than or equal to the latter (after
suppressing its ω

2 factor), g2(ν), for any ν ≥ ν0:

g1(ν) = −
1
4
(ẽinc + νeinc)

†
[
(ν + 1) Im ξ + ν Im GEE

0

]−1
(ẽinc + νeinc)

(S104)

≥ − (1 + ν)2

4
e†

inc

[
(ν + 1) Im ξ + ν Im GEE

0

]−1
einc = g2(ν).

(S105)

The last inequality can be proved by performing
Cholesky decomposition on the Hermitian matrix[
(ν + 1) Im ξ + ν Im GEE

0
]−1

= L†L and using Cauchy–Schwarz
inequality to relax the cross term:

Re{e†
incL†Le∗inc} ≤

∣∣∣e†
incL†Le∗inc

∣∣∣
≤ ‖Leinc‖ · ‖Le∗inc‖ = ‖Leinc‖2 = e†

incL†Leinc.
(S106)
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It follows from Eq. (S105) that the maximum of g1(ν) is greater
than the maximum of g2(ν). The optimum of a primal function is
given by the negative of the maximum of a dual function, so the
optimal objective function considered here is smaller than the
optimal scattering bound in Eq. (S21), and equivalently Eq. (S20):

max
φ

{
Im
(

ψ̃†
incφ

)
− φ†(Im ξ)φ

}
≤ 2

ω
Pmax

sca . (S107)

To summarize, we derive general LDOS bounds for any material.
For non-magnetic material specifically, LDOS can be directly
bounded by maximum power response in Eqs. (S14), (S18), and
(S20):

ρtot ≤
2

πω2 ∑
j

Pmax
ext,j + ρ0 (S108)

ρnr ≤
2

πω2 ∑
j

Pmax
abs,j (S109)

ρrad ≤
2

πω2 ∑
j

Pmax
sca,j + ρ0, (S110)

where j = 1, 2, 3 denotes the summation of maximum power
quantities from three orthogonally polarized unit dipoles.

LDOS bounds for a finite non-magnetic scatterer In the following,
we assume the scatterer is non-magnetic and finite, embedded
in the vacuum. The non-magnetic nature of the scatterer allows
us to use Eqs. (S108)–(S110) to decompose LDOS bounds to
previous power bounds for three orthogonally polarized unit
dipoles. In Eqs. (S91)–(S93), we presented power bounds for
arbitrary dipole distributions p(x). Here, we start with a point
dipole oriented along êj at origin p(x) = pj(x) = p0δ(x)êj with
p0 = 1, and later sum up the contributions from three orthogonal
polarizations. We also assume the scatterer is finite, thus can
be enclosed by a spherical shell (see Fig. S4 inset). A shell-
like bounding volume has spherical symmetry, so vi and wi in
Eqs. (S91)–(S93) are regular VSWs:

vmn1(x) = wmn1(x) = k
3
2 RgMmn(kr, θ, φ) (S111)

vmn2(x) = wmn2(x) = k
3
2 RgNmn(kr, θ, φ), (S112)

ui are outgoing VSWs:

umn1(x) = k
3
2 Mmn(kr, θ, φ) (S113)

umn2(x) = k
3
2 Nmn(kr, θ, φ). (S114)

Power bounds in Eqs. (S91)–(S93) require us to evaluate four
overlap integrals: p†

j wi, u†
i ui, u†

i vi, v†
i vi. We first evaluate over-

lap integral between the point dipole and regular VSWs in the
source volume Vs:

p†
j wi =

∫
Vs

p∗j (x) ·wi(x)dx (S115)

= p0êj ·wi(x = 0) (S116)

= k
3
2 p0

{
ej · RgNm,1(0, θ, φ) if j = 2, n = 1
0 else,

(S117)

where we used the fact that only RgNm,1 has nonzero value at
the origin. Exact value of the dot product ej · RgNm,1(0, θ, φ)
depends on the orientation of the dipole:

ej · RgNm,1(0, θ, φ) =


± 1

2
√

3π
δm,±1 if êj = x̂

1
2i
√

3π
δm,±1 if êj = ŷ

− 1√
6π

δm,0 if êj = ẑ.

(S118)

Later for LDOS, we will need to evaluate averaged power from
three randomly oriented dipoles, which is related to the quantity:

1
3 ∑

j
|p†

j wi|2 = k3 p3
0

18π
δn,1δj,2, (S119)

where êj runs through directions x̂, ŷ, and ẑ. We now evaluate
overlap integrals between different VSWs within the bounding
volume V:

v†
i vi =

∫
V

v∗mnj(x) · vmnj(x)dx = Ij

(
j(1)n (x), j(1)n (x)

)
(S120)

u†
i ui =

∫
V

u∗mnj(x) · umnj(x)dx = Ij

(
h(1)∗n (x), h(1)n (x)

)
(S121)

u†
i vi =

∫
V

u∗mnj(x) · vmnj(x)dx = Ij

(
h(1)∗n (x), j(1)n (x)

)
, (S122)

where we defined function:

Ij

(
z(1)n (x), z(2)n (x)

)
=


∫ kR2

kR1
x2z(1)n (x)z(2)n (x)dx if j = 1

n(n + 1)
∫ kR2

kR1
z(1)n (x)z(2)n (x)dx

+
∫ kR2

kR1
[xz(1)n (x)]′[xz(2)n (x)]′dx if j = 2.

(S123)
Bound for total extinction from three randomly oriented

dipoles is bounded by:

1
3 ∑

j
Pext,j ≤

1
3 ∑

j
∑

i

ω

2
|p†

j wi|2
1

Im ξ

(
u†

i ui −
|u†

i vi|2

Im ξ + v†
i vi

)
︸ ︷︷ ︸

fi

,

(S124)

where we defined enhancement factor fi (depends only on n and
j). Using Eq. (S119), we can show that:

1
3 ∑j Pext,j

P0
≤ fn=1,j=2, (S125)

where P0 = ωk3 p3
0/12π is the power radiated by a dipole with

amplitude p0 in vacuum. Similarly, one can show that:

ρtot

ρ0
≤ 1 + fn=1,j=2. (S126)

The enhancement factor fn=1,j=2 shows how large the light ex-
tinction of three uncorrelated dipoles can be, compared to the
vacuum. While the first term in Eq. (S124) appears in previous
material-loss bound [2], the second term comes from radiation
coupling between the bounding volume and the vacuum. In
near field when material loss dominates, fn=1,j=2 can be simpli-
fied to the material-loss bound:

fn=1,j=2 =
1

Im ξ
u†

i ui (S127)

=
1

Im ξ

(
x− 1

x
− 1

x3

) ∣∣∣∣kR2

kR1

(S128)

→ 1
Im ξ

1
k3R3

1
, (S129)

where, in the last line, we take the limit of extreme near field
where kR1 � 1, kR2. In Fig. S4, we showed the general bound
and material-loss bound for LDOS enhancement at wavelength
360 nm by Ag surroundings. It is clear that both bounds follow
Eq. (S129) in near field limit. In far field, general bound is slightly
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λ=360 nm

Ag
d

R=λ

Fig. S4. Bounding volume for the LDOS problem is chosen
to be a spherical shell with three randomly oriented dipoles
in the center, radiating at wavelength λ = 360 nm. Inner
radius of the shell is determined by the minimum distance
d to the scatterer comprising only Ag. Outer radius R of the
shell covers the far end of the scatterer and is assumed to be
one wavelength in the figure. In the far field, general bound
is tighter than material-loss bound. In the near field, general
bound converge to material-loss bound, and both follow the
same divergence as 1

Im ξ
1

k3d3 .

tighter than the material-loss bound due to the consideration of
additional radiative loss.

Absorption and scattering bounds can also be written
through an enhancement factor over the vacuum radiation:

1
3 ∑j Pabs,pj

P0
≤ f abs

n=1,j=2(ν
∗) (S130)

1
3 ∑j Psca,pj

P0
≤ f sca

n=1,j=2(ν
∗). (S131)

Though they are more complicated in the sense that both en-
hancement factors (defined below) are functions of ν∗, the op-
timal dual variable. Similarly, for non-radiative and radiative
LDOS we can write:

ρnr

ρ0
≤ f abs

n=1,j=2(ν
∗) (S132)

ρrad
ρ0
≤ 1 + f sca

n=1,j=2(ν
∗). (S133)

Lastly, we present the explicit expressions of absorptive and
scattering enhancement factors. For absorption, the enhance-
ment factor is:

f abs
n=1,j=2(ν

∗) =
ν∗2

4(ν∗ − 1)
1

Im ξ

(
u†

i ui −
|u†

i vi|2

(ν∗ − 1) Im ξ/ν∗ + v†
i vi

)
,

where ν∗ is determined by solving a = (ν∗ − 1) Im ξ/ν∗ in the
following equation:

2a

(
u†

i ui −
|u†

i vi|2

a + v†
i vi

)

=

{
u†

i ui Im ξ + |u†
i vi|2

[
1−

(Im ξ + v†
i vi)(2a + v†

i vi)

(a + v†
i vi)2

]}
.

For scattering, the enhancement factor is:

f sca
n=1,j=2(ν

∗) =
ν∗

4
1

Im ξ

(
u†

i ui −
|u†

i vi|2

ν∗ Im ξ/(ν∗ − 1) + v†
i vi

)
,

where ν∗ is determined by solving a = ν∗ Im ξ/(ν∗ − 1) in the
following equation:

2 Im ξ

(
u†

i ui −
|u†

i vi|2

a + v†
i vi

)

=

{
u†

i ui Im ξ + |u†
i vi|2

[
1−

(Im ξ + v†
i vi)(2a + v†

i vi)

(a + v†
i vi)2

]}
.

14. THERMAL ABSORPTION AND EMISSION

Our formalism applies equally to thermal absorption and emis-
sion. By Kirchhoff’s Law (reciprocity), or its nonreciprocal gen-
eralization [18], total thermal absorption and emission are equiv-
alent and can be found by considering a weighted average of
incoherent, orthogonal incoming fields Einc,i:

〈|Einc|2〉 = ∑
i

wi
∣∣Einc,i

∣∣2 , (S134)

where wi is a weighting factor. For a continuum of incoming
fields the sum is instead an integral with a differential weight.
A direct consequence of the incoherent averaging is that an up-
per bound to the average absorptivity/emissivity is given by
the average of the bounds for each independent incident field.
Surprisingly, the bounds computed by this averaging proce-
dure varies depending on which basis is used for the incoming
fields. If the incident field is treated as an incoherent sum of
plane waves, over all propagation angles, for example, then
the absorptivity/emissivity cross-section bounds would simply
be a scalar multiple of Eq. (S86). However, the bound can be
tightened (decreased) if the incident fields are instead decom-
posed in vector spherical waves, for which the weight function
wi is determined by the fluctuation-dissipation theorem [16]:
wi =

4
πω Θ(T), where Θ(T) = h̄ω/(eh̄ω/kBT − 1) is the Planck

energy of a harmonic oscillator at temperature T without the
zero-point energy. The resulting bound is a sum over all VSW
channels i:

Pabs ≤
2
π

Θ(T)∑
i

{
ρi Im ξ

(Im ξ+ρi)2 for ρi ≤ Im ξ
1
4 for ρi ≥ Im ξ

(S135)

where i = {n, m, j} includes all VSW channels: n = 1, 2, ...,
m = −n, ..., n, j = 1, 2, and the sum converges for any nonzero
Im ξ. Eq. (S58) shows a distinct threshold behavior within each
VSW channel. In the asymptotic limits of radiation-dominant
(ρi � Im ξ) or material-loss-dominant (ρi � Im ξ) scenarios,
Eq. (S58) simplifies to the known channel- [19] and material-loss
bounds [2]. In tandem, accounting for both mechanisms yields
a significantly tighter bound than any previous approach.

Taking the same approach as in Sec. 3 in the paper, the bound
for any arbitrary shape is no larger than the bound for any
bounding volume of that shape, and thus we can compute an-
alytical bounds for finite-sized thermal absorbers with spher-
ical bounding volumes. Figure S5 shows the thermal absorp-
tion/emission cross-section as a function of the size of a spherical
silver [20] nanoparticle at wavelength λ = 360 nm. Included is
the bound of Eq. (S58), which is nearly achieved by the sphere
at its ideal resonant size. We also include the recently published
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T-operator bound

general bound
sphere

Ag

λ = 360 nm
R

Fig. S5. General bound for maximum thermal absorption
and emission, compared with T-operator bound and thermal
absorption of an actual Ag [20] sphere with radius R.

T-operator bound of Ref. [12], which considered the effect of
radiation and material losses separately for thermal sources. As
shown in Fig. S5, by incorporating both losses in one optical
theorem constraint, even for thermal fields the new bounds are
slightly tighter.
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thickness
(µm)

absorption
(%) design thickness

(µm)
absorption
(%) design

0.4 52 0.6 57

0.8 70 1.0 76

1.2 90 1.4 94

1.6 95

Table S3. Inverse-designed SiC ultra-thin absorbers at 11 µm. These are grey-scale designs with material ranges from pure air
(purely white) to pure SiC [21] (dark blue).
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material wavelength period thickness ε design

Au [22] 500 nm 55 nm 80 nm -2.99+2.93i

Ag [22] 500 nm 55 nm 40 nm -7.63+0.73i

Al [22] 500 nm 55 nm 40 nm -34.23+8.98i

SiO2 [23] 9 µm 1.1 µm 1.4 µm -4.71+3.20i

doped InAs [24] 7.5 µm 1.1 µm 0.6 µm -10.39+1.80i

SiC [21] 11 µm 1.1 µm 0.8 µm -3.81+0.23i

Table S4. Inverse-designed ultra-thin absorbers with 70% absorption rate. These are grey-scale designs with material ranges from
pure air (purely white) to pure material (dark blue).


