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We develop a computational framework for identifying bounds to light–matter interactions, originating
from polarization-current-based formulations of local conservation laws embedded in Maxwell’s
equations. We propose an iterative method for imposing only the maximally violated constraints, enabling
rapid convergence to global bounds. Our framework can identify bounds to the minimum size of any
scatterer that encodes a specific linear operator, given only its material properties, as we demonstrate for the
optical computation of a discrete Fourier transform. It further resolves bounds on far-field scattering
properties over any arbitrary bandwidth, where previous bounds diverge.
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Nanoscale fabrication techniques, computational inverse
design [1–4], and fields from silicon photonics [5–8] to
metasurface optics [9–12] are enabling transformative use of
an unprecedented number of structural degrees of freedom in
nanophotonics. An emerging critical need is an understand-
ing of fundamental limits to what is possible, analogous to
Shannon’s bounds for digital communications [13,14]. In
this Letter, we identify an infinite set of local conservation
laws that can form the foundation of a general framework for
computational bounds to light–matter interactions. We show
that this framework enables calculations of bounds for two
pivotal applications, for which all previous approaches yield
trivial (e.g., divergent) bounds. First, we identify computa-
tional bounds on the minimum size of a scatterer encoding
any linear operator, demonstrated for an analog optical
discrete Fourier transform (DFT). Second, we identify
bounds on maximum far-field extinction over any band-
width, resolving an important gap in power–bandwidth
limits [15]. The local power-conservation laws identified
here have immediate ramifications across nanophotonics;
more generally, they appear to be extensible to linear partial
differential equations across physics.
Bounds, or fundamental limits, identify what is possible

in a complex design space. Beyond Shannon’s bounds,
well-known examples include the Carnot efficiency limit
[16], the Shockley–Queisser bounds in photovoltaics [17],
the Bergman–Milton bounds in the theory of composites
[18–20], and the Wheeler–Chu bounds on antenna quality
factor [21,22], among many more. In electromagnetism, for
a long period of time there were very few bounds on general
response functions (with a notable exception being sum
rules on total response [23–26]), seemingly due to the
complex and nonconvex nature of Maxwell’s equations.
Yet a flurry of recent results have suggested the possibility
for general bounds [15,27–42], for quantities ranging from
single-frequency scattering to radiation loss of free elec-
trons, for bulk and 2D materials. Underlying all of these

results is one or two energy-conservation laws, arising in
various formulations of Maxwell’s equations. Additional
bounds have been identified via Lagrangian duality [43,44]
or physical approximations [45–47]. Yet there are pivotal
applications for which all of these approaches either do not
apply or offer trivial bounds.
Here we identify an infinite set of conservation laws that

must be satisfied by any solution of Maxwell’s equations.
These laws are “domain oblivious”; i.e., once a designable
region is specified, the constraints are valid for any possible
geometric structure in that region. Moreover, each con-
servation law is a quadratic form that is amenable to
semidefinite relaxation [48,49]. To accelerate the bound
computations we develop an algorithm that automatically
selects ideal constraints to impose. These bounds lack the
intuition of analytical expressions, but they can provide
significantly tighter limits.
Local conservation laws.—To start, we derive local

conservation laws that must be satisfied by any Maxwell
solution. These conservation laws manifest the complex
Poynting theorem [50] over any subdomain of a scatterer, but
only when formulated in terms of induced polarization
currents do they exhibit properties that enable global bounds.
We consider any scattering problem comprising arbitrary
sources and arbitrary electric and/or magnetic material
properties. We use six-vector notation, concatenating electric
and magnetic three-vectors for more concise expressions; for
example, the electromagnetic fields ψ and polarization
currents ϕ are given by ψ ¼ ðEHÞ and ϕ ¼ ðPMÞ, and we
use dimensionless units in which the speed of light is 1.
Physically, the conservation laws that form the founda-

tion of our bounds arise from the complex Poynting
theorem [50]. As depicted in Fig. 1, Poynting’s theorem
must apply not only globally over an entire scatterer, but
also locally at any point within. We can rewrite the usual
Poynting theorem (a function of the electromagnetic fields)
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in terms solely of the polarization currents ϕ induced across
the scatterer. Ignoring reactive power momentarily, and
considering only real power flow, the statement that at any
point x the local extinction must equal local absorption plus
scattered power can be written:

−
ω

2
Im½ϕ†ðxÞψ incðxÞ� ¼

ω

2
ϕ†ðxÞIm½−χ−1�ϕðxÞ

þ ω

2
Im

�
ϕ†ðxÞ

Z
V
Γ0ðx; x0Þϕðx0Þdx0

�
; ð1Þ

where the first term corresponds to extinction, the second
term to absorption, and the last term to scattered power.
Equation (1) is the well-known optical theorem [50–52],
applied to an infinitesimal bounding sphere at point x. We
can generalize this expression in three ways, physically
argued here and rigorously justified in the Supplemental
Material (SM) [53]. First, we can allow for a complex-
valued frequency and replace ω with its conjugate ω�,
which makes no difference at real frequencies but will be
useful for bandwidth-averaged scattering below. Second,
we can remove the imaginary part from Eq. (1), which then
manifests the complex Poynting theorem, including reac-
tive power conservation. Finally, instead of considering
only a single position x, we can consider any linear
combination of points as determined by taking the integral
of Eq. (1) against a weighting tensor DðxÞ (which also
isolates the polarization directions). Taken together, these
generalizations comprise the constraints

−
ω�

2

Z
V
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¼ω�
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�Z
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�
:
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Roughly speaking, Eq. (2) represents a linear combination of
pointwise equalities from the complex Poynting theorem. To
illuminate the algebraic structure of Eq. (2), we can strip
away the integrals and position dependencies by assuming
any standard numerical discretization [62], in which case ϕ
and ψ inc become vectors andD, Γ0, and χ are matrices. After
discretization, Eq. (2) is given in matrix notation by

ω�

2
ϕ†DΓ0ϕ −

ω�

2
ϕ†Dχ−1ϕ ¼ −

ω�

2
ϕ†Dψ inc: ð3Þ

The complex-Poynting-theorem-based conservation laws of
Eqs. (2) and (3) satisfy two key properties that enable global
bounds over all possible designs. First, they are domain
oblivious: within a designable region, Eqs. (1)–(3) must
apply at every point regardless of whether it is part of the
scattering domain or the background. Second, they
are quadratic forms of the polarization currents, and therefore
amenable to semidefinite programming, as we discuss below.
Computational bounds.—Any electromagnetic power-

or momentum-flow objective function f will be a linear or
quadratic real-valued function of the polarization currents
ϕ, which in our matrix notation can be written as
fðϕÞ ¼ ϕ†Aϕþ Reðβ†ϕÞ þ c, where A is any Hermitian
matrix and β and c are any vector and constant, respec-
tively. To identify bounds for any objective f, we replace
the Maxwell equation constraint (which is not domain
oblivious) with a finite number of constraints of the form of
Eq. (3), each with a uniqueDmatrix given byDj for the jth
constraint. Then, a bound on the maximum achievable f is
given by the solution of

maximize
ϕ

fðϕÞ ¼ ϕ†Aϕþ Reðβ†ϕÞ þ c

such that ϕ†RefDjω
�ðΓ0 − χ−1Þgϕ ¼ −Reðω�ϕ†Djψ incÞ:

ð4Þ
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FIG. 1. (a) A freeform, homogeneous photonic scatterer within a designable region (outer dashed circle). Previous bounds utilized
global conservation laws (large arrows). Here, we introduce a polarization-current-based formulation of local conservation laws that
provide an infinite set of constraints for the identification of global bounds to light–matter interactions. (b) Example of local constraints
(green, purple, red) tightening bounds from global constraints only (blue), for maximum absorption from a material with permittivity
ε ¼ 12þ 0.1i in a region with diameter d ¼ 0.18λ. Our iterative method of selecting maximally violated constraints rapidly converges.
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The domain of the optimization variable ϕ is the space
of coefficients of the basis functions extending over an entire
designable region [e.g., the dashed circled cylinder in
Fig. 1(a)]. We have taken only the real part of Eq. (2)
because D → iD accounts for the imaginary part.
Equation (4) is a key result: it is a formulation of maximum
response, subject to all possible local-power conservation
laws, as a quadratically constraint quadratic program, i.e., a
QCQP optimization problem [49,63]. By virtue of the
domain-oblivious property of the constraints, it applies to
all possible designs within the designable domain. A bound
on the solution of Eq. (4) can be found by standard
techniques that relax the original, quadratic program to a
higher-dimensional linear program over semidefinite matri-
ces, i.e., a semidefinite program [48,49], which can be solved
by interior-point methods [63,64]. Such transformations of
QCQPs have led to meaningful bounds in many areas of
engineering [49,64–68]; we leave the details of the trans-
formation of Eq. (4) to the SM [53]. The final solution
represents a global, unsurpassable bound for any electro-
magnetic scattering response.
It is computationally prohibitive to impose the infinitely

many constraints of Eq. (2). We propose an iterative
algorithm for identifying which subset of constraints to
use. One should start with the two D matrices that
correspond to global power conservation, i.e., the identity
tensor and the identity tensor multiplied by i, which
correspond to reactive- and real-power conservation,
respectively. (The latter leads to a positive semidefinite
quadratic form and is crucial to restricting the magnitude of
the solutions.) As a first iteration, we use only those two D
matrices to find an initial bound for Eq. (4), as well as the
first-iteration optimal polarization currents, ϕopt;1. From
those currents, we can identify out of all possible remaining
D-matrix constraints which ones are “most violated” by
ϕopt;1, i.e., which constraint is farthest from zero (under the
L2 norm). The constraint for the corresponding D matrix is
then added to the constraint set, and a second iteration is
run, identifying new bounds and new optimal polarization
currents. This process proceeds iteratively until conver-
gence. Straightforward linear algebra shows (cf. SM [53])
that after iteration j, with optimal currents ϕj, the next
constraint to add is the one with D matrix,

Djþ1 ¼ ωdiag½ϕopt;jϕ
†
opt;jðΓ0 − χ−1Þ† þ ϕopt;jψ inc�; ð5Þ

where “diag” is the diagonal (in space) matrix comprising
the diagonal elements of its matrix argument. Figure 1(b)
demonstrates the utility of this method of maximally
violated constraints for bounding the TE absorption cross
section σabs of a dielectric scatterer of any shape occupying
a wavelength-scale cylindrical design region. The design-
able region need not be symmetric; in the SM [53] we
include an example with a triangular region. Whereas
the global constraints (blue) are significantly larger than

the response of a cylindrical scatterer (black), including
local constraints shows that one can clearly identify tighter
bounds. Yet both randomly chosen D matrices (green) and
spatially pointwise, delta-function-based D matrices (pur-
ple) show slow convergence. The iterative method via
maximally violated constraints shows rapid convergence,
requiring only two local constraints. The spatial patterns of
both the optimal current distribution and local constraints
are shown in the SM [53]. From this method we can clearly
identify the cylinder as a globally optimal structure for that
material and design region.
S-matrix feasibility.—To demonstrate the power of this

framework, we consider a fundamental question in the
fields of analog optical computing [69–73] and metasur-
faces [9–11]: what is the minimum size of a scatterer that
achieves a desired scattering matrix Starget? A generic setup
is depicted in Fig. 2(a). The target S matrix could manifest
lens focusing or metaoptical computing, for example.
The objective, then, is to minimize the relative difference
between the achievable and target S matrices, i.e.,
fobj ¼ kS − Stargetk2=kStargetk2, where k · k denotes the
Frobenius norm. It is straightforward to write this objective
in the form appearing in Eq. (4), as the S matrix elements
are linear in the polarization currents and the objective is a
quadratic form (cf. SM [53]). Then, to determine the
minimum feasible size for implementing Starget, we can
compute the bound on the smallest error between S and
Starget, and define an acceptable-accuracy threshold (1%)
below which the device exhibits the desired functionality
with sufficient fidelity.
We apply our framework to two such problems, both of

which comprise two-dimensional, nonmagnetic scatterers
with refractive index n ¼ ffiffiffiffiffi

12
p

, discretized by the discrete
dipole approximation [74,75]. In the first, we identify the
smallest domain within which a scatterer can possibly act
as a discrete Fourier transform operator over three TE
cylindrical-wave channels (cf. SM [53]). The DFT is the
foundation for discrete Fourier analysis and many other
practical applications [76]. With uniform frequencies and
nonuniform sample points t1, t2, and t3 (and t1 is fixed as a
reference to be t1 ¼ 0), a target S matrix that acts as a DFT
can be represented as [77]

Stargetðt2; t3Þ ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 e−2πit2=3 e−2πit3=3

1 e−4πit2=3 e−4πit3=3

1
CA: ð6Þ

Figure 2(b) shows the bound-based feasibility map for
implementing such an S matrix. Each point in the grid
represents a unique DFTmatrix (prescribed by the values of
t2 and t3), and the color indicates the smallest diameter d,
relative to wave number k, of a structure that can possibly
exhibit the desired DFT-based scattering matrix (at 99%
fidelity). There is no structure, with any type of patterning,
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that can act as a DFT matrix if its diameter is smaller than
that specified in Fig. 2(b). Thus our approach enables
bounds on the minimal possible size of an optical element
implementing specific functionality. A related calculation is
shown in Fig. 2(c). In that case we consider a target S
matrix for a power splitter, directing a single incident wave
equally into outgoing spherical-wave channels index by m
(wherem is the angular index,m ¼ −M;…;M). We depict
the minimum diameter as a function of the number of
scattering channels, both for the global-constraint-only
approach (blue) and our new approach with local con-
straints. (The error bar indicates a numerical instability in
the global-constraint-only approach, cf. SM [53].) Whereas
the global-constraint-only approach unphysically con-
verges to wavelength scale as the number of channels
increases, our new approach predicts an unavoidable
increase in the diameter of the power splitter, representing
the first such capability for capturing minimum-size
increases with increasing complexity.
Far-field power–bandwidth limits.—The local-constraint

bound framework resolves another outstanding question:
how large can far-field scattering be over an arbitrary
bandwidth Δω? In Ref. [15], bounds for near-field aver-
age-bandwidth response were derived using global con-
straints at a complex frequency, yet it was noted that the
same technique fails in the far field (it exhibits an unphysical
divergence). A feature of Eq. (2) is that the local conserva-
tion laws can also be applied at complex frequencies, as the
inclusion of the conjugate frequency ω� leads to operators
that are positive semidefinite over the whole upper half of the
complex-frequency plane, by passivity (cf. SM [53]).
A prototypical example to consider is the maximum

extinction cross section σextðωÞ from a given material over
a bandwidth Δω. Using contour-integral techniques from
Refs. [15,78], the average extinction around a center
frequency ω0, over a bandwidth Δω, as measured by

integration against a Lorentzian window function, HðωÞ ¼
f½Δω=π�=½ðω − ω0Þ2 þ Δω2�g, can be written as the
evaluation of a single scattering amplitude at a complex
frequency ω̃ (cf. SM [53]):

hσexti ¼
Z þ∞

−∞
σextðωÞHðωÞdω

¼ Im½ω̃ψT
incð−ω̃Þϕðω̃Þ�; ð7Þ
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FIG. 2. (a) Photonic devices are often designed to achieve a specific “target” S matrix in a compact form factor. Our bounds enable
identification of the minimum diameter d of any such device (relative to wave number k), for (b) nonuniform DFT matrix
implementation (t2 and t3 are parameters of the DFT matrix) and (c) power splitters for a single input to 2M þ 1 outgoing channels. In
(b), each point in the image represents a unique DFT matrix, and the colors indicate the minimum diameter for possibly achieving that
scattering matrix. In (c) it is evident that local constraints are required to identify feasible design regions as the required functionality
increases in complexity. In (b) and (c) the channels are TE cylindrical waves and the material has refractive index n ¼ ffiffiffiffiffi
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FIG. 3. Bounds on maximal bandwidth-averaged extinction,
hσextimax, as a function of bandwidth Δω for a lossless Lorentz–
Drude material with plasma frequency ωp and oscillator fre-
quency ωc ¼ 0.3015ωp, which is chosen such that the permit-
tivity is 12 at a center frequency ω0 ¼ 0.05ωp. The bounds are
normalized to the geometric cross section σgeo of the designable
region, a cylinder with diameter d ¼ 3=ωp. While known sum
rules (black) and global-constraint bounds (blue) are loose for
many bandwidths, utilizing local constraints (convergence shown
in inset) enables apparently tight bounds across all bandwidths.
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where ω̃ ¼ ω0 þ iΔω. Equation (7) is a linear objective
function of the form required by Eq. (4), evaluated at a
complex frequency. By imposing the global and local
conservation constraints at the complex frequency ω̃, we
can identify bounds to the bandwidth-averaged far-field
response. Figure 3 shows the results of such a computation
for a lossless Lorentz–Drude material (with plasma fre-
quencyωp) in a designable region with diameter d ¼ 3=ωp.
Included in the figure is a bound on average extinction from
a known all-frequency sum rule [23,79] (black), which is
descriptive in the infinite-bandwidth limit, and the global-
constraint-only bounds (blue), which are useful in the
small-bandwidth limit, but each diverges in the opposite
limits. Through the use of global and local constraints (red),
we can identify bounds over any bandwidth of interest, and
we find that a cylindrical scatterer is nearly globally
optimal.
Conclusions.—We have shown that local conservation

laws enable computational bounds to light–matter inter-
actions. The demonstrated bounds for optical analog
computing and power–bandwidth limits are suggestive of
a wide array of future possible applications. From the
perspective of identifying feasible design volumes for target
scattering matrices, a natural extension is to large-area,
broadband metalenses. It is clear that there are trade-offs
between diameter, bandwidth, and efficiency, but the
optimal architecture and form factor is unknown. Our
bounds may resolve the Pareto frontier. Similarly, the
power–bandwidth limits have natural applications in photo-
voltaics [45,80–82] and ultrafast optics [83–85].
There are two key areas for improvement looking

forward. The first is to nonlinear optics and nonlinear
physics, where conservation laws analogous to Eq. (3)
would not have the quadratic structure that enabled semi-
definite-programming-based bounds here. The second is to
identify faster computational schemes, such as those used
in “fast solvers” [86–88], as the computational cost of
semidefinite relaxations prohibited our exploration of
structures far larger than wavelength scale. Overcoming
both of these limitations would open interesting possibil-
ities for applications ranging from quantum dynamics to
large-scale metaoptics.
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I. GENERALIZED LOCAL CONSERVATION LAWS

In the main text, we use physical intuition, from the complex Poynting theorem, to argue that the following local
energy conservation laws hold for any geometry in a designable region V :

−ω
∗

2

∫
V

φ†(x)D(x)ψinc(x)dx =
ω∗

2

∫
V

φ†(x)D(x)dx

[∫
V

Γ0(x, x′)φ(x′)dx′ − χ−1φ(x)

]
, (S1)

where φ represents the polarization fields, Γ0 is the background Green’s function, ψinc is the incident field, and D
is a 6×6 tensor field that acts as a weighting function over space and polarization. We have allowed the frequency
to possibly be complex and taken its conjugate, which proves useful for transforming bandwidth-averaged scattering
problems into single-complex-frequency problems.

In this section, we provide a rigorous and direct, but perhaps less physically intuitive, derivation of Eq. (S1). We
start assuming only Maxwell’s equations, and as a first step perform a standard reformulation into volume integral
equations [1], various forms of which are sometimes referred to as the Lippmann–Schwinger equation. We start by
simply equating the total field at any point, ψ(x), to the sum of the incident field ψinc(x) and scattered field ψscat(x):

ψ(x) = ψinc(x) + ψscat(x). (S2)

Scattered fields, by definition, are the fields radiated by the polarization currents φ(x), across the scatterer, that are
induced by the presence of the scatterer: ψscat(x) =

∫
V

Γ0(x, x′)φ(x′)dx′, where Γ0(x, x′) is again the background
Green’s function. We want to write Eq. (S2) solely in terms of the polarization fields; to do so, we note that at any
point in the scatterer the polarization field is given by φ(x) = χψ(x), where χ is the material susceptibility tensor,



2

which can be inverted: ψ(x) = χ−1φ(x). Substituting both ψ(x) and ψscat(x) as a function of φ(x) in Eq. (S2) and
rearranging the terms leads to:

− ψinc(x) =

∫
V

Γ0(x, x′)φ(x′)dx′ − χ−1φ(x), x ∈ Vmaterial. (S3)

In our six-vector notation, the electric and magnetic fields are stacked together with six polarization components in
total, and Eq. (S3) holds for each polarization index i:

− ψinc,i(x) =

[∫
V

Γ0(x, x′)φ(x′)dx′
]
i

−
[
χ−1φ(x)

]
i
, x ∈ Vmaterial. (S4)

The index i = 1, 2, ..., 6 runs through the six polarization components. Next, we correlate every polarization component
by multiplying Eq. (S4) by the j-th polarization component φ∗j (x) at the same point in the material:

− φ∗j (x)ψinc,i(x) = φ∗j (x)

[∫
V

Γ0(x, x′)φ(x′)dx′
]
i

− φ∗j (x)
[
χ−1φ(x)

]
i
, x ∈ Vmaterial. (S5)

This multiplication by φ∗j (x) to create the conservation law of Eq. (S5) serves a very important purpose. Equation (S5)
is now not only valid over the entire material region, Vmaterial, it can also be extended throughout the background-
material region that comprises the remainder of the designable-region domain V , keeping χ−1 as a constant tensor.
This is trivially true because φ∗j (x) is zero outside of Vmaterial. By contrast, in the original volume-integral equation of
Eq. (S2), φ(x) for x ∈ Vmaterial is only present in one of the three terms; that equation, therefore, cannot be extended
outside of the material domain. Thus, we have now this crucial property of “domain-obliviousness:” we can extend
Eq. (S5) to any point in the designable region V :

− φ∗j (x)ψinc,i(x) = φ∗j (x)

[∫
V

Γ0(x, x′)φ(x′)dx′
]
i

− φ∗j (x)
[
χ−1φ(x)

]
i
, x ∈ V. (S6)

Equation (S6) represents infinitely many constraints over the domain of the designable region. Any one of the
constraints is a pointwise conservation law representing a generalized complex Poynting theorem.

In practice, we can only impose a finite set of constraints. The optimal constraints to use are not necessarily simply
a subset of the pointwise constraints. Instead, we can take weighted averages of Eq. (S6) over polarization and space
to form a new space of constraints out of all possible linear combinations. To prepare for such an average, we first
multiply Eq. (S6) by a space- and polarization-dependent coefficient dij(x):

− φ∗j (x)dij(x)ψinc,i(x) = φ∗j (x)dji(x)

[∫
V

Γ0(x, x′)φ(x′)dx′
]
i

− φ∗j (x)dji(x)
[
χ−1φ(x)

]
i
, x ∈ V. (S7)

Now, when we sum Eq. (S7) over polarizations and integrate over V , we have:

−
∫
V

φ†(x)D(x)ψinc(x)dx =

∫
V

φ†(x)D(x)dx

∫
V

Γ0(x, x′)φ(x′)dx′ −
∫
V

φ†(x)D(x)χ−1φ(x)dx. (S8)

Now we can identify an infinite set of constraints through the infinite set of D tensors that are possible. If we multiply
Eq. (S8) by ω∗/2, we have precisely the expression of Eq. (S1). In matrix notation (i.e., assuming any standard
discretization), they are equivalent to

ω∗

2
φ†DΓ0φ−

ω∗

2
φ†Dχ−1φ = −ω

∗

2
φ†Dψinc, (S9)

which is Eq. (3) of the main text.

II. SEMIDEFINITE RELAXATION OF THE QCQP PROBLEM

In the main text, we show that one can formulate the bound problem with a quadratic-form objective and the
conservation-law constraints:

max.
φ

f(φ) = φ†Aφ+ Re
(
β†φ

)
+ c

s.t. φ†Re {Djω∗(ξ + Γ0)}φ = −Re
(
ω∗φ†Djψinc

)
,

(S10)
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where, for simplicity, we have introduced a new variable ξ = −χ−1. This type of problem with quadratic objective
and quadratic constraints is well studied in the optimization literature [2–4]. In this section we describe how it is
translated to a semidefinite program using standard techniques: each step below is also clearly explained in Ref. [3].
The first step is to homogenize the quadratic forms on Eq. (S10), which means introducing an additional variable in
order to have purely quadratic and scalar terms without any linear term. To do this, in the objective function we
introduce a complex-valued scalar variable s into the linear term:

f(φ) = φ†Aφ+ Re
(
s†β†φ

)
+ c. (S11)

The key advantage of introducing this variable is that now one can write f as a homogeneous quadratic form:

f


φ
s


 =

φ
s


† A 1

2β

1
2β
† 0


φ
s

+ c. (S12)

We can do this for each of the j constraints as well, introducing the dummy variable s for each constraint, which then
takes the form: φ

s


†Re {Djω∗(ξ + Γ0)} 1

2ω
∗Djψinc

1
2ωψ

†
incD

†
j 0


φ
s

 = 0. (S13)

One cannot allow s to take arbitrary values or else it will modify the initial problem. Instead, it should be required
to have modulus one, i.e., |s|2 = 1, which is itself a quadratic form in the degrees of freedom φ and s. Finally, we can
lump all degrees of freedom into a single vector v:

v =

φ
s

 . (S14)

With this notation, the objective, the N conservation-law constraints, and the modulus constraint of s are all written
in the form

v†Fv. (S15)

The way to optimize over such quadratic forms is to “lift” them to a higher-dimensional space where they become
linear forms. The first step is to use the trace operator to rewrite the quadratic form:

v†Fv = Tr
{
Fvv†

}
. (S16)

Then one defines a rank-one matrix variable X given by vv†, in which case we now have a linear form:

Tr
{
Fvv†

}
= Tr {FX} . (S17)

One cannot optimize arbitrarily over X and have an equivalent problem; one must additionally impose constraints
that X be a rank-one, positive-definite matrix. The rank-one constraint is nonconvex; the “relaxation” in semidefinite
relaxation (SDR) refers to dropping this rank-one constraint. Once that constraint has been removed, one is left with
a linear objective function (in X), and 2N + 1 linear constraints, over the space of positive-definite matrices. The
transformation to a semidefinite program is complete.

The semidefinite relaxation mentioned above does not introduce any actual relaxation if there is only one (global)
constraint in the optimization problem [3]. Furthermore, even though a certain degree of relaxation may be triggered
by additional (local) constraints, it is straightforward to show that the additional constraints can only tighten the
bound. This can also be seen in our examples for both absorption cross-section (Fig. 1(b) in the main text) and
broadband extinction (Fig. 3 in the main text), where the bounds are always monotonically decreasing with the
additional local constraints.



4

III. ALGORITHM: MAXIMALLY VIOLATED LOCAL CONSTRAINTS

In this section we derive the optimal new D matrix, and corresponding conservation-law constraint, that should be
added to a given set of constraints by our principle of maximum violation. The conservation-law constraints as given
in the main text are of the form

φ†Re {Djω∗(ξ + Γ0)}φ = −Re
(
ω∗φ†Djψinc

)
, (S18)

where j runs from 1 to N , where N is the current number of constraints that have been imposed. For simplicity, we
have introduced ξ = −χ−1. The key remaining question, then, is how to select the (N + 1)th constraint? From the
first N constraints, one can identify a potentially optimal polarization current φopt as the first singular vector of the
optimal matrix solution of the SDP (as discussed in Sec. II). Given this polarization current, then, a sensible approach
to selecting a new constraint is to identify the constraint whose residual is largest when evaluated for polarization
current φopt. In other words, we want the DN+1 that maximizes the quantity

maximize
D

∣∣∣Re
{
φ†optDω∗(ξ + Γ0)φopt + ω∗φ†optDψinc

}∣∣∣ . (S19)

By the cyclic property of the matrix trace, we can rewrite this expression as

Re Tr
{
D
[
ω∗(ξ + Γ0)φoptφ

†
opt + ω∗ψincφ

†
opt

]}
, (S20)

where we dropped the absolute value since any optimal negative value can be reversed through D → −D. Let us
denote the matrix in square brackets as C. Expanding the real (Hermitian) part, we have

1

2

[
Tr {DC}+ Tr

{
D†C†

}]
. (S21)

Clearly one can maximize the residual by allowing the norm of D to be arbitrarily large, but that would not give
insight into which spatial pattern D should take. As a normalization we can take the Frobenius norm of D to be 1,
i.e. Tr

{
D†D

}
= 1. Then, straightforward variational calculus yields an optimal D matrix given by D = C†; since D

must be (spatially) diagonal, we take D to comprise the diagonal elements of C†:

DN+1 = diag
[
C†
]

= ω diag
[
φoptφ

†
opt (ξ + Γ0)

†
+ φoptψinc

]
, (S22)

where now “diag” strips its matrix argument of all elements except along the (spatial) diagonal, as in the main text.
This is the optimal selection of the D matrix as presented in the main text, which significantly accelerates convergence
of the bound computation.

IV. MAXIMAL ABSORPTION CROSS-SECTION UNDER LOCAL CONSTRAINTS

In Fig. 1(b) of the main text, we provide an example of maximizing absorption cross-section under local constraints.
In this section, we provide detail on the formulation of the optimization problem and the iteration process involved in
identifying the maximally-violated local conservation laws. The main result in this section is summarized in Fig. S1,
where we consider not only a cylindrical design region, but also a triangular design region to showcase the generality
of this computational approach.

The exact expression of absorption cross-section in terms of the polarization current φ can be identified from the
global power-conservation law [5–7], which can be derived from Eq. (S18) by choosing Dj as an identity multiplied by
the unit imaginary number at a real frequency ω:

ω

2
φ† (Im Γ0)φ︸ ︷︷ ︸

Pscat

+
ω

2
φ† (Im ξ)φ︸ ︷︷ ︸

Pabs

=
ω

2
Im
(
ψ†incφ

)
︸ ︷︷ ︸

Pext

, (S23)

where each term from left to right represents scattered power, absorption, and extinction, respectively. If the incident
wave is a plane wave, the expression of its intensity in our dimensionless unit is I0 = |E0|2/2, where E0 is the plane-
wave amplitude. The absorption cross-section is defined as the ratio between absorption and plane-wave intensity
σabs = Pabs/I0 = ωφ† (Im ξ)φ/|E0|2.
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Figure S1. (a) The left panel shows spatial profiles of the global and the first four maximally-violated local constraints. The
design region is a cylinder with diameter 0.18λ and the presented profiles are its 2D cross sections. Di denotes the Ez component
of Di in space, normalized so its maximal magnitude is one. Each iteration generates an optimal current, as indicated by the
direction of the arrows. The normalized Ez component of the optimal currents are shown on the right panel, which in turn
generate the next maximally-violated local constraints. (b) Convergence of the upper bound on absorption cross-section, σabs,
under maximally-violated local constraints (red line) as compared to the ones from only the global constraints (blue line) or
other type of local constraints (green and purple lines). Figures (c,d) are the same as (a,b) but the designableregion is now an
equilateral triangle with side length 0.18λ.

Maximizing absorption cross-section under local conservation laws is equivalent to the optimization problem:

max.
φ

σabs = ωφ† (Im ξ)φ/|E0|2

s.t. φ†Re {Djω∗(ξ + Γ0)}φ = −Re
(
ω∗φ†Djψinc

)
. j = 1, 2, ..., N

(S24)

Given designable region, incident field, and material properties as inputs, one solves this optimization problem via
semidefinite relaxation discussed in Sec. II. The rest of this section considers a specific example where the incident
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wave is a TE-polarized plane wave and the material is nonmagnetic with susceptibility ε = 12 + 0.1i. We consider
two designable regions: a cylinder and a equilateral triangle. The cylindrical design region has diameter d = 0.18λ,
total length h in its translational invariant direction (h→∞, so we can solve the 2D simplification), and a geometric
cross section σgeo = dh. The equilateral triangle has side length l = 0.18λ, total length h in its translational invariant

direction, and a geometric cross section σgeo =
√

3/2lh.
As mentioned in Sec. III, the algorithm for generating the maximally-violated local conservation constraints is

built up from the existing global conservation constraints. Thus, we first solve the optimization problem (S24) with
only the global real-power conservation constraint where N = 1 and D1 = iI. For a cylindrical design region, the
optimization program returns an optimal polarization current p1 shown in the right panel of Fig. S1(a), and an upper
bound σabs/σgeo = 4.12, too loose to be shown in Fig. S1(b). Adding an additional global reactive-power conservation
constraint (N = 2, D1 = iI, and D2 = I) gives us a dipole-like optimal current p2 shown in Fig. S1(a), and an upper
bound σabs/σgeo = 0.139, marked by the blue line in Fig. S1(b). Next, we include extra local conservation laws in
the optimization problem (S24) to tighten the global bound (result shown in Fig. S1(b)). In particular, we use the
algorithm derived in Sec. III of the SM to generate maximally-violated local conservation constraints. For example,
we use Eq. (S22) to find out a local constraint, D3, that is maximally violated by the optimal current p2. The spatial
profile of its diagonal components (denoted by D3) are shown in the left panel of Fig. S1(a). This additional constraint
reduces the upper bound (the second red marker from the left in Fig. S1(b)), and together with global constraints
D1 and D2, predicts an optimal current p3 which resembles the polarization current in an unpatterned cylinder. We
continue this iteration for 50 more times in Fig. S1(b) and show the spatial profile of the first six in Fig. S1(a). After
the fourth iteration, both the upper bound (red line Fig. S1(b)), and the optimal currents have converged to the
solution of an unstructured cylinder, suggesting the ineffectiveness of structuring in this particular case.

The same algorithm is applied to a equilateral triangular design region shown in Fig. S1(c,d). In this example, we
consider two possible scattering structures: an unpatterned triangle with a dimension the same as the design region,
and the largest unpatterned cylinder that can fit in the design region (bottom panel of Fig. S1(c)). Neither structure
generates the optimal current distribution predicted in the right panel of Fig. S1(c), and consistently, neither reach the
predicted upper bound in Fig. S1(d). Unlike a cylindrical design region where an unpatterned cylinder is already the
optimum, a triangular design region may benefit from a more complex structure. From a computational perspective,
the asymmetry of the triangular region has no effect on the speed or convergence of the bound computations.

V. VOLUME INTEGRAL FORM OF T -MATRIX

In the main text, one of the examples considered is whether a specific scattering-matrix can be targeted by some
designable region, an example that we discuss more in the next section. In this section, in preparation for that, we
derive the transition-matrix (T -matrix) elements for waves impinging upon and exiting from a 2D circular bounding
region. The T -matrix calculation is simpler than a direct S-matrix calculation, and the two are related in a simple
way, as noted in the next section.

We first derive the volume integral form of T -matrix elements as a linear function of the polarization current in
arbitrary basis functions. Then, specifically for a 2D circular bounding region, we derive the T -matrix expression in
the basis of vector cylindrical waves.

Given arbitrary bounding volume V , a set of incoming basis {ψin,n} is defined on its surface ∂V through the
orthogonal relation:

− 1

4

∫
∂V

ψin,i(xs)
†P (xs)ψin,j(xs) = δij , P =

 0 n̂×

−n̂× 0

 , (S25)

with n̂ being the unit normal vector. When i = j, the right hand side of the orthogonality relation measures the
power flow of state ψin,i through the surface ∂V . (We choose the convention pointing outward for outgoing states and
inward for incoming states.) Outgoing states can be defined as the time reverse of the incoming states:

ψout,i(xs) = Qψ∗in,i(xs), Q =

I 0

0 −I

 , (S26)

where the operator Q flips the sign of the magnetic field, as required by time reversing. The incident basis {ψinc,i}
is defined by a linear combination of the incoming and outgoing basis: ψinc,i = αψout,i + βψin,i. Coefficients α and β
depend on the exact basis one choose. For example, for vector cylindrical waves, they are both 1

2 .
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Incident field ψinc can be expanded by the incident basis with coefficients cinc,i. Similarly, scattered field ψout can
be expanded by the outgoing basis with coefficients cout,i. These two sets of coefficients are connected by T -matrix.

ψinc =
∑
i

cinc,iψinc,i, ψscat =
∑
i

cout,iψout,i,

cout

 =

 T



cinc

 . (S27)

Thus, the entry Tij measures the ratio cout,i/cinc,j. In other words, when the incident field ψinc = ψinc,i, Tij takes
the value of cout,i. Using this definition, we can express Tij as a linear function of polarization current φ after some
mathematical manipulation:

Tij = −1

4

∫
∂V

ψ†out,i(xs)P (xs)ψscat(xs) (S28)

= − 1

4α

∫
∂V

ψ†inc,i(xs)P (xs)ψscat(xs), (S29)

= − 1

4α

∫
∂V

∫
V

ψ†inc,i(xs)P (xs)Γ0(xs,xv)φ(xv) (S30)

where we used the fact that ψout,i = 1
αψinc,i− β

αψin, and the incoming and outgoing fields are orthogonal in this inner

product. To further simplify this equation, we first take its transpose, and then use the properties PT (xs) = P (xs)
and ΓT0 (xs,xv) = Γ0(xv,xs) to write Tij as:

Tij = − 1

4α

∫
∂V

∫
V

φT (xv)Γ0(xv,xs)P (xs)ψ
∗
inc,i(xs) (S31)

=
1

4α

∫
∂V

∫
V

φT (xv)Γ0(xv,xs)P (xs)ψinc,i(xs), (S32)

where we use the properties ψ∗inc,i(xs) = Qψinc,i(xs) and −P (xs)Q = P (xs) to derive the second equality. Lastly, we

identify that the product P (xs)ψinc,i(xs) gives the surface equivalent current ξinc,i(xs) on the surface ∂V , which can
be propagated back to the volume through the Green’s function:

Tij =
1

4α

∫
∂V

∫
V

φT (xv)Γ0(xv,xs)ξinc,i(xs) (S33)

=
1

4α

∫
V

φT (xv)ψinc,i(xv) (S34)

=
1

4α
φTψinc,i. (S35)

The key result, Eq. (S35), identifies Tij as a overlap integral between incident channel ψinc,i and polarization current
φ that is induced by incident field ψinc,j.

For a highly symmetric bounding volume, the derivation of the volume integral form of T -matrix can be greatly
simplified. In the example provided in the main text, we assume nonmagnetic material with a 2D bounding area and
TE incidence. The basis for outgoing and incident field can be chosen as the set of vector cylindrical waves:

vinc,n(x) =
1

2
ẑJn(kρ)einφ (S36)

vout,n(x) =
1

2
ẑH(1)

n (kρ)einφ, (S37)

where Jn(x) is the Bessel function of order n, and H
(1)
n (x) is the Hankel function of the first kind of order n.

Conventionally, these two basis written here do not include magnetic field, and are not normalized based on Eq. (S25),
so we use different notations other than ψinc,n and ψout,n.

As discussed before, when ψinc = vout,j, the entry Tij = cscat,i. By virtue of the Green’s function expansion
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Γ0(x,x′) = i
∑
n vout,n(x)v†inc,n(x′) for ρ > ρ′, we can easily derive the volume integral form of Tij :

Tij =

∫
∂V

v†out,i(xs)ψscat(xs)dS∫
∂V

v†out,i(xs)vout,i(xs)dS
(S38)

=

∫
∂V

v†out,i(xs)
[∫
V

Γ0(x,x′)φ(x′)dV
]

dS∫
∂V

v†out,i(xs)vout,i(xs)dS
(S39)

=

∫
∂V

v†out,i(xs)
[∫
V
i
(∑

n vout,n(x)v†inc,n(x′)
)
φ(x)dV

]
dS∫

∂V
v†out,i(xs)vout,i(xs)dS

(S40)

= i

∫
V

v†inc,i(x
′)φ(x′)dV (S41)

= iv†inc,iφ (S42)

Similar as before, the result suggests that Tij is the projection of φ into the given incident basis vinc,i with an additional
phase delay, under the incident field ψinc = vinc,j. There is slight difference between this and the more general result
in Eq. (S35) because the vector cylindrical waves defined in equations (S36) and (S37) do not include magnetic field
components and are not normalized based on Eq. (S25).

VI. FORMULATION OF S-MATRIX FEASIBILITY BOUND

The objective for the S-matrix feasibility problem is to minimize the relative difference between the achievable and
target S matrices:

Min fobj = ‖S − Starget‖2 / ‖Starget‖2 , (S43)

where we choose ‖ · ‖ to denote Frobenius norm.
It is simpler to translate the scattering matrix S, which relates incoming waves to outgoing waves, into the transition

matrix T , which relates incident waves to scattered waves. One can typically choose a basis (such as the cylindrical-
wave basis) for which S = I + 2T . Inserting this relation into Eq. (S43), we have:

fobj = 4 ‖T − Ttarget‖ / ‖Starget‖2 (S44)

=
4

||Starget||2
∑
ij

|Tij − Ttarget,ij |2 (S45)

=
4

||Starget||2
∑
j

fobj,j , (S46)

where in the last equality we separate out the objective into contributions from different incident fields:

fobj,j =
∑
i

|Tij − Ttarget,ij |2. (S47)

Each fobj,j corresponds to the scattering from incident field indexed by j, so we bound them separately and later add
up their contributions. As we proved in section IV of the SM, Tij can be written as a linear function of φ, which is

the induced polarization current under the incident field ψinc = ψinc,j. Assume this linear relation is Tij = w†iφ. We
can plug it in Eq. (S47) to express each fobj,j as a quadratic function of φ:

fobj,j = φ†

(∑
i

wiw
†
i

)
φ+ Re

(−2
∑
i

Ttarget,ijwi

)†
φ

+
∑
i

|Ttarget,ij |2, (S48)

This can be written in the form of optimization problem (3) in the main text (after adding a minus sign to the

objective to turn minimization into maximization) with A = −
∑
i wiw

†
i , β = 2

∑
i Ttarget,ijwi, c = −

∑
i |Ttarget,ij |2,

and ψinc = ψinc,j.
For the general case where the incident basis ψinc,i is defined through Eq. (S25), we substitute ωi in Eq. (S48)

with ψ∗inc,i/(4α
∗). For the specific case where the we assume nonmagnetic material with a 2D bounding area and TE

incidence, the incident basis ψinc,i is vector cylindrical waves vinc,i defined in Eq. (S36), and we substitute ωi with
−ivinc,i.
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VII. MINIMUM DIAMETER OF A POWER SPLITTER

In the main text, we show the minimum diameter required for a power splitter for a single input to 2M + 1
outgoing channels in the cylindrical-wave basis. The way we determine the minimum diameter for each M is to
minimize the objective function ‖S − Starget‖2 / ‖Starget‖2 for every diameter d, and choose the smallest one that

satisfies ‖S − Starget‖2 / ‖Starget‖2 < 1%. This process is shown in Fig. S2(b) for the case with M = 5.
The gap between two blue lines in Fig. S2(b) originates from a numerical instability in the global-constraint-only

approach. Higher orders of the cylindrical waves yield widely separated numerical scales in the corresponding matrices,
such that with only global constraints the optimization does not terminate successfully for some diameters. The two
dashed blue lines indicate the uncertainty region for determining the minimum diameter. The lower bound of this
uncertainty region is estimated from the asymptotic limit of the global-constraint-only approach in Fig. S2(a). The
minimum diameter can be lower bounded by the lower dashed line of the uncertainty region, which explains the
location of the circular point with the errorbar.
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Figure S2. (a) Minimum diameter required for a power splitter for a single input to 2M + 1 outgoing channels. (b) Lower
bounds on the objective ||S − Starget||2/||Starget||2 at each diameter when the largest scattering channel M = 5. Uncertainties
rising from the numerical instabilities in global constraints are marked by the dotted blue lines.

VIII. FORMULATION OF THE BANDWIDTH-AVERAGED EXTINCTION BOUND

In this section, we transform the bandwidth-averaged extinction to a single scattering amplitude at a complex
frequency by Cauchy’s residue theorem, using a similar technique to that which has been demonstrated in Refs. [8, 9].
We start with the expression of single-frequency extinction cross section at a real frequency:

σext(ω) = Im
[
ωψ†inc(ω)φ(ω)

]
(S49)

Incident field ψinc(ω) in far-field scattering is often approximated as a plane wave. Without loss of generality, we
assume it has unit intensity and is propagating along the x direction. We use dimensionless quantities with c = 1,
so the plane-wave frequency dependence can be written as eiωx. In anticipation of an analytic continuation into the
complex plane, we use the general relation ψ∗inc(ω) = ψinc(−ω) for real-valued frequencies [10] to remove the complex
conjugation (which cannot be analytically continued):

σext(ω) = Im
[
ωψTinc(−ω)φ(ω)

]
(S50)

= Im s(ω). (S51)

Here, we define a new term s(ω) = ωψTinc(−ω)φ(ω) that we identify as the far-field scattering amplitude. Since the
incident plane wave ψinc(ω) has the frequency dependence eiωx (analytic everywhere), and the polarization current
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φ(ω) is a causal linear-response function [11], the amplitude s(ω) is analytic in the upper half of the complex-frequency
plane (UHP).

The average extinction cross section 〈σext〉 in a bandwidth ∆ω around a center frequency ω0 can be defined as the

integral of the product of σext(ω) and a Lorentzian window function Hω0,∆ω(ω) = ∆ω/π
(ω−ω0)2+∆ω2 :

〈σext〉 =

∫ +∞

−∞
σext(ω)H(ω)dω (S52)

= Im

∫ +∞

−∞
s(ω)H(ω)dω (S53)

The integrand s(ω)H(ω) has two properties that allows us to use Cauchy’s residue theorem to equate the all-frequency
integral to a single pole in the UHP. The first property is that the s(ω)H(ω) only has one pole ω̃ = ω0 + i∆ω from the
window function in the UHP, since s(ω) is complex analytic in the UHP as discussed above. The second property is
the magnitude of s(ω)H(ω) decays faster than 1/|ω| when |ω| → +∞. In this asymptotic limit, the window function
H(ω) decays at a rate of 1/|ω|, and the amplitude s(ω) decay at the rate of 1/|ω|, which can be proved as follows.

In the high-frequency limit, the polarization field must decay towards zero (the bound charges cannot respond to
such high frequencies), and on physical grounds [10] the decay must occur in proportion to 1/|ω|. Conventionally,
the decay constant is chosen to be a “plasma frequency” ωp that is physically meaningful for metals but applies to
dielectrics as well. Because the scatterer becomes transparent at high frequencies, the Born approximation applies

and the polarization field will be directly proportional to the incident field: φ(|ω| → ∞) = −ω
2
p

ω2ψinc(ω), so that

s(|ω| → ∞) = −ω
2
p

ω ψ
T
inc(−ω)ψinc(ω) ∼ 1/ω. Note that the inner product ψTinc(−ω)ψinc(ω) does not dependent on

frequency as the frequency dependence of the incident plane wave is just eiωx.
Taking these two properties into account, we can connect the upper and lower limit of the integral in Eq. (S52) by a

half circle in the UHP, which does not actually contribute to the integral due to the fast decay rate of the s(ω)H(ω).
Integration of this closed loop can be transformed into the single pole of s(ω)H(ω) at ω̃ = ω0 + i∆ω by Cauchy’s
residue theorem, giving the expression in the main text:

〈σext〉 = Im
[
ω̃ψTinc(−ω̃)φ(ω̃)

]
. (S54)

In the case of TE incidence in a 2D geometry with nonmagnetic material, we only need to consider the z polarization
component of the electric incident field, which is a scalar quantity. If we still use notation ψinc to denote this
quantity, we can solve for the maximum 〈σext〉 by the optimization problem with β = iω̃∗eiω0x+∆ωx and incident field
ψinc(ω̃) = eiω0x−∆ωx.

IX. POSITIVE SEMIDEFINITE PROPERTY OF SCATTERING AND ABSORPTION OPERATORS

The power-bandwidth limit discussed in the main text relies on the fact that the local energy conservation laws
can be extended to complex frequency ω. Explicitly writing out the frequency dependency of the operators, and
introducing ξ(ω) = −χ(ω)−1, we have:

ω∗

2
φ†DΓ0(ω)φ+

ω∗

2
φ†Dξ(ω)φ = −ω

∗

2
φ†Dψinc. (S55)

Among all the possible local conservation laws we can impose, the most important one is the global power-conservation
law. It constrains the optimization variable φ to the boundary of a high-dimensional ellipsoid, and can be derived by
assigning D an identity tensor and take the imaginary part of Eq. (S55):

1

2
φ† Im [ω∗Γ0(ω)]φ+

1

2
φ† Im [ω∗ξ(ω)]φ = −1

2
Im(ω∗φ†ψinc). (S56)

In this section, we prove the positive semidefinite property of the two involving operators, Im{ω∗Γ0(ω)} and
Im{ω∗ξ(ω)}, in the UHP, using a similar technique to that which has been used in Ref. [12–14].

We first prove the positive semidefinite property of the operator Im{ω∗ξ(ω)} in a passive scattering problem.
Passivity requires that the polarization currents φ in the material do not do work. The total work they do up to a
time t must be greater than or equal to zero:

Re

∫
dx

∫ t

−∞
dt′ ψ†(x, t′)

dφ(x, t′)

dt′
≥ 0. (S57)
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In a scattering problem where ψ is the total field, we can interpret φ as the polarization currents, which are the
convolution of the susceptibility in time and space (we allow for spatial nonlocality):

φ(x, t′) =

∫
dx′
∫ t′

−∞
dt′′ χ(x, x′, t′ − t′′)ψ(x′, t′′) =

∫
dx′
∫ ∞

0

χ(x, x′, τ)ψ(x′, t′ − τ) dτ, (S58)

where in the second expression the variable τ can be interpreted as the delay since the excitation that is creating a
response. Inserting the latter expression into Eq. (S57) we have:

Re

∫ ∫
dx′dx

∫ t

−∞
dt′ ψ†(x, t′)

∫ ∞
0

dτ χ(x, x′, τ)ψ′(x′, t′ − τ) ≥ 0, (S59)

where ψ′ denotes the derivative of ψ. The expression of Eq. (S59) must be valid for all ψ. We can choose a simple
time-dependence for ψ, following Refs. [13, 14]:

ψ(x, t′) =

{
ψ(x)e−iωt

′
for t′ < T

0 for t′ ≥ T,
(S60)

where ω is a complex-valued frequency, i.e. ω = ω0 + i Imω, and T is simply a shut-off time that we will always
choose larger than t and which assures technical conditions are satisfied in rigorous proofs [13, 14]. Given this form,
Eq. (S59) becomes:

Re

∫ ∫
dx′dxψ†(x)

∫ t

−∞
dt′ eiω0t

′
e(Imω)t′

∫ ∞
0

dτ χ(x, x′, τ) (−iω) e−iω0(t′−τ)e(Imω)(t′−τ)ψ(x′) ≥ 0, (S61)

Re-arranging terms then gives

Re

[
(−iω)

∫ ∫
dx′dxψ†(x)

∫ t

−∞
dt′ e2(Imω)t′

{∫ ∞
0

dτ χ(x, x′, τ)eiωτ
}
ψ(x′)

]
≥ 0. (S62)

The term in curly brackets is proportional to the Fourier transform of χ, i.e. χ(ω) at complex frequency ω, and we
can drop the constants related to 2π. The integral over t′ is easily evaluated. Finally, noting that Re(−iz) = Im(z),
we have the expression

e2(Imω)t

2 Imω
Im

∫ ∫
dx′dxψ†(x) [ωχ(x, x′, ω)]ψ(x′) ≥ 0. (S63)

This expression must be valid for all ψ(x) distributions. We can remove the spatial dependence of χ and instead treat
it as a square matrix (as in any standard discretization), in which case we can simply write that

Im [ωχ(ω)] ≥ 0 for Imω > 0, (S64)

where the imaginary part of the matrix argument refers to its anti-Hermitian part; e.g., ImA = (A−A†)/2i.
To convert Eq. (S64) to an inequality for ξ, we use the fact that χ = −ξ−1 to rewrite Eq. (S64) as

Im [ωχ] = Im
[
−ωξ−1

]
(S65)

= Im
[
−ω

(
ξ†ξ
)−1

ξ†
]

(S66)

=
(
ξ†ξ
)−1

(Im [ω∗ξ]) , (S67)

which implies that

Im [ω∗ξ(ω)] ≥ 0 for Imω > 0. (S68)

Thus we have our proof for the positive semidefinite property of the first of our two operators. Now we can
follow similar logic for the second one. We start with an expression similar to Eq. (S57), but now we change our
interpretation: we will take the φ to be free currents, ψ to be the fields radiated by them, and the quantity in Eq. (S57)
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then represents the negative of the work done by those currents on the outgoing field (which again must be positive).
Thus our starting point is the negative of Eq. (S57):

Re

[
−
∫

dx

∫ t

−∞
dt′

dφ(x, t′)

dt′

†
ψ(x, t′)

]
≥ 0, (S69)

where we also reversed the order of our arguments in the integrand for simplicity below. (That is allowed because
Re z = Re z∗.)

Now our convolution relation will connect the fields at a time t′ to the polarization currents at an earlier time
through the background Green’s function Γ:

ψ(x, t′) =

∫
dx′
∫ t′

−∞
dt′′ Γ(x, x′, t′ − t′′)φ(x′, t′′) =

∫
dx′
∫ ∞

0

Γ(x, x′, τ)φ(x′, t′ − τ) dτ. (S70)

We are going to insert this convolution relation into Eq. (S69), analogous to what we did before. We can combine
this with the step of specifying a time-dependence for the function φ(x, t):

φ(x, t′) =

{
φ(x)e−iωt

′
for t′ < T

0 for t′ ≥ T.
(S71)

Performing these two steps in Eq. (S69) we have:

Re

∫ ∫
dxdx′

∫ t

−∞
dt′ (−iω∗)eiω0t

′
e(Imω)t′φ†(x)

∫
dτ Γ(x, x′, τ)e−iω(t′−τ)φ(x′) ≥ 0. (S72)

As before, the oscillatory terms cancel, the integral over τ is proportional to the Γ(x, x′, ω), i.e. the Fourier transform
of Γ(x, x′, τ), and the integral over t′ is simple to do. We are left with:

e2(Imω)t

2 Imω
Im

∫ ∫
dxdx′ φ†(x) [ω∗Γ(x, x′, ω)]φ(x′) ≥ 0. (S73)

If we again treat Γ in space as a square matrix, we thus have

Im [ω∗Γ(ω)] ≥ 0 for Imω > 0, (S74)

where again the imaginary part of the matrix refers to its anti-Hermitian part.
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