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Abstract: We use inverse design to discover metalens structures that exhibit broadband,
achromatic focusing across low, moderate, and high numerical apertures. We show that standard
unit-cell approaches cannot achieve high-efficiency high-NA focusing, even at a single frequency,
due to the incompleteness of the unit-cell basis, and we provide computational upper bounds on
their maximum efficiencies. At low NA, our devices exhibit the highest theoretical efficiencies
to date. At high NA—of 0.9 with translation-invariant films and of 0.99 with “freeform”
structures—our designs are the first to exhibit achromatic high-NA focusing.
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1. Introduction

Metasurfaces [1,2] are patterned optical thin films that offer the possibility of manipulating
light, for applications from holography to lenses, with precision equal to or greater than
their bulky conventional-optics counterparts. For metasurface lenses, i.e., metalenses, a now-
standard approach of “stitching” together wavelength-scale resonators into a larger device has
demonstrated the possibility of focusing [2–9], but has suffered from narrow-bandwidth operation,
low-numerical-aperture restrictions, and/or low focusing efficiencies. In this paper, we prove
that unit-cell designs cannot have high efficiency for high numerical apertures; conversely, we
theoretically demonstrate that “inverse design,” a large-scale computational design technique
optimizing all geometrical degrees of freedom [10–20] can discover high-numerical-aperture
(“fast”) lenses that operate over visible bandwidths with best-in-class focusing efficiencies. Inverse
design enables rapid computation of gradients with respect to arbitrarily many geometrical
degrees of freedom; our implementation using a minimax formulation of the design criteria
identifies fabrication-ready designs that can simultaneously achieve the large bending angles of
high-NA lenses with the broad-bandwidth control that is necessary. Our results demonstrate the
capabilities of adjoint-based approaches for superior design, and the emerging possibilities for
combining multiple high-efficiency, hard-to-achieve functionalities in a single metasurface.

Metasurface designs and implementations have demonstrated the core functionality required for
many applications: holography [22–24], retroreflection [25], antennas [26], flat lenses [5–9,27]
and tunable optical components [28]. Yet that functionality is typically highly restricted in
bandwidth, angular acceptance, and/or numerical aperture. Underlying these restrictions is
the intuitive “unit cell” approach that pioneered initial metasurfaces designs [1,2,29], whereby
large-area films (tens to thousands of wavelengths in diameter) are constructed from libraries
of wavelength-scale unit cells whose outgoing-wave phases, under “locally periodic” boundary
conditions, are optimized for a single or few frequencies. This approach has been a crucial first
step for designing large-area structures with complex patterning. Yet in the case of metalenses,
which require precise control of potentially rapidly varying wavefronts, no metalens designs
to date have achieved broad bandwidth and high numerical aperture. And as we show here,
the assumption of local periodicity is incompatible with the requirements of high-NA focusing,
wherein the amplitude and phase of the outgoing field must undergo rapid variations. Using a
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basis-projection approach we show that an assumption of local periodicity necessarily entails
large focusing-efficiency losses, even at a single frequency.

To circumvent the limitations of the resonator-based unit-cell approach, we instead use inverse
design to discover full-wave structures that simultaneously achieve broad bandwidth, high
numerical aperture, and high efficiency. Inverse design centers around computing gradients
with respect to large numbers of structural degrees of freedom by “adjoint”-based methods.
Adjoint-based sensitivities trace their roots to control theory [30–33], and have since been
used for rapid, efficient optimization in circuit theory [34], aerodynamics [35], mechanics and
elasticity [36], quantum dynamics [37,38], and deep learning [39–41], where it is known as
“backpropagation.” More recently it has emerged as a promising design tool for nanophotonics
[18,19,42] for applications including waveguide demultiplexers [17,43,44], beam deflectors
[45,46], photonic bandgaps [47], solar cells [48], and many others. Preliminary studies have
applied inverse design to metasurfaces [13,20,46,49], including large-area metasurfaces [15,50],
albeit thus far limited to isolated frequencies or metrics other than lens focusing (beam deflection,
polarizers, etc.).

In this work, we use inverse design to demonstrate broadband achromatic metalenses operating
with relatively high efficiencies across the visible for both small and large numerical apertures as
shown in Fig. 1. To fully explore the design space and the tradeoffs associated with numerical
aperture, bandwidth, and efficiency, we primarily design two-dimensional dielectric profiles,
while demonstrating that the methods scale to fully three-dimensional films. We make no periodic
/ unit-cell approximations, and indeed the designs that we discover often show rapidly varying
spatial profiles; to ensure feasible computation times, we design devices in the 10–60λ size
range. In these exponentially large design spaces, one can never certify global optimality (unless
there are known global bounds by some other means [51–57]), and we make no claims that our
high-performance structures are globally optimal. It is possible that deep learning or related
techniques may overcome the non-uniqueness from an inverse-problem perspective [58]. A key
advantage of the adjoint-based approach is that computational complexity does not increase with
the number of parameters, nor do we empirically find a number-of-parameters cost in the quality
of the local optima. (This may be related to the “blessing of dimensionality” in the structure
of high-dimensional data [59].) We do find that a combination of minimax optimizations and
random parameter initializations (both discussed further below) enables avoidance of low-quality

Fig. 1. Metalens inverse design. (a) The figure of merit for optical focusing is computed
at an exit plane of the metalens (dashed line). (b) Schematic comparison of the unit-cell
design approach, whereby a single (ideal) phase is fixed, using an incomplete basis periodic-
boundary diffraction orders, versus large-area inverse design, whereby the full device
scattering properties are incorporated into the design. (c) Compilation of broad-bandwidth
inverse-designed metalenses using “freeform” (red) and constant-z (“Const-z”) geometries,
showing relatively high efficiencies for numerical apertures ranging from 0.1 to 0.99. The
black circles indicate recently published results [8,9,21] with similar bandwidths, which
operate only in the low-NA regime.
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optima to a significant extent. With recent developments in fast electromagnetic solvers [60,61],
one can anticipate applying this approach to devices orders of magnitude larger, with small and
controllable errors, in the near future. The full-device optimizations enable us to overcome the
efficiency losses and single-functionality limitations associated with assuming small, periodic
unit cells, which are especially prominent at high NA. Our metalens designs demonstrate the
capability for inverse design to lead the discovery of non-intuitive yet superior metalens devices.

2. Unit-cell-metalens efficiency limits

The prototypical approach to metalens design is the unit-cell method [3,9,27], wherein the
fields at the exit plane of the metalens are designed by breaking them into wavelength-scale
“unit cells” that vary slowly and can be treated locally as periodic elements. This reduces
the large-scale design problem into a large number of much smaller design problems, while
simplifying the physics of the problem. In the prototypical case with a unit-cell period smaller
than the wavelength, there is only a single outgoing diffracted-wave order for each cell, and
the design problem simplifies to one of controlling the phase and amplitude of each cell’s
outgoing wave. Such a formulation extends to broadband metalens operation, where all of the
complexity of large-area, many-frequency operation can be simplified to control of phase and its
first two derivatives—group velocity and group velocity dispersion—at a single frequency [8].
Yet there are complex tradeoffs associated with the unit-cell approach. For any fixed fabrication
tolerance, a larger period allows for more complex unit cells, but as the period increases beyond
the wavelength, higher-order modes are introduced, which if not controlled can lead to significant
efficiency losses. Conversely, smaller periods reduce the number of geometrical degrees of
freedom, particularly if the local-periodicity assumption is to hold.

We use amodal-decomposition analysis to derive bounds on focusing efficiencies for metalenses
designed by a unit-cell approach, at any given frequency. We show that even without incorporating
deviations from the uncontrolled assumption of periodic boundary conditions, a high numerical
aperture necessarily incurs significant efficiency losses in the unit-cell approach. The key issue
is that the ideal exit-plane fields are non-periodic over each unit cell, and cannot be represented
by periodic diffraction orders without mismatch. This mismatch, integrated over the entire
metasurface diameter, leads to imperfect focusing and efficiency losses. Mathematically, this
mismatch is a physical manifestation of the incompleteness of the diffraction-order basis in a
non-periodic system, an effect that is exacerbated in unit cells with only a small number of
diffraction orders.

Consider a lens focusing light to a focal point. At the exit plane of the lens, the optimal fields
Eideal are the time-reversed conjugates of those radiated from a dipole at the focal point, with the
dipole polarization selected for maximum efficiency. (It can be shown that this is the optimal
excitation for field concentration from unit-normalized excitation fields; if sidelobe or spot-size
constraints are required, there are known techniques for identifying the optimal exit-plane fields
[62–64].) In a unit-cell approach, designing a metalens by stitching together library elements
simulated with periodic boundary conditions (over period Λ) is equivalent to designing the field
EUC,ideal as a linear combination of basis functions um,Λ(x) that are the diffraction orders of each
“periodic” unit cell:

EUC,ideal(x) =
NdNuc∑
m=1

cm,Λum,Λ(x), (1)

where Nuc is the number of unit cells, Nd is the number of (polarization-resolved) diffraction
orders per unit cell, and the Λ-periodic diffraction orders um,Λ are given by

um,Λ(x) =
1
√

AΛ
ε̂mei[2π(amx+bmy)/Λ+kzmz]Hm(x), (2)



Research Article Vol. 28, No. 5 / 2 March 2020 / Optics Express 6948

where ε̂m is the unit-vector polarization, AΛ is the unit-cell area, Hm(x) a Heaviside step function
that is nonzero only for the unit cell corresponding to mode index m, the variables am and bm are
integers, and kzm is the appropriate forward-propagation wavevector component such that the total
wavevector magnitude is ω/c, for frequency ω. The basis functions um,Λ form an orthonormal
set of functions over the area A of the device, i.e.

∫
A u†m,Λun,Λ = δmn.

Every unit-cell metasurface design [5,8,9,22,27,29] is implicitly using Eq. (1) to describe the
outgoing fields. The true ideal field is the time-reversed field from a dipole at the focal point,
which we denote Eideal. The best possible unit-cell design is the one that minimizes the difference
between EUC,ideal and Eideal; for example, the field that minimizes ‖Eideal − EUC,ideal‖22 . (Often
only the phase is optimized and the efficiency decreases further; since we are interested in upper
bounds, we assume the ideal scenario.) By the orthogonality of the basis functions in Eq. (2),
there is a set of unit-cell coefficients cm,Λ that minimize this least-squares quantity, given by
(Appendix)

cm,Λ =

∫
u†m,Λ(x)E

ideal(x). (3)

From an infinite library of unit cells, then, stitching together those with coefficients closest to the
distribution of Eq. (3) represents the ideal unit-cell design. Yet even if such library elements
exist, the simulated performance of the full device falls short in efficiency, in part for a simple
reason: generically, the field EUC,ideal of Eq. (1) is not a valid solution of Maxwell’s equations.
We can semi-analytically determine the closest approximation to Eq. (1) which is a valid

solution of Maxwell’s equations. At the exit plane of the metalens, we can write the fields not as
a superposition of unit-cell basis functions, but instead as a linear combination of plane waves:

EUC(x) =
Npw∑
m=1

cm,Lum,L(x), (4)

where the um,L have the same form as in Eq. (2), but replacing the period Λ with the device
diameter L, and removing the Heaviside function. (Since we are interested in large metalenses
with L � λ, we simplify the discretization to Npw waves in Eq. (4) by assuming periodic
boundary conditions, which have no effect in the large-L limit.) The Maxwell field EUC that is
closest to EUC,ideal can be found by minimizing the squared two-norm ‖EUC,ideal − EUC‖22 ; by the
orthogonality of the um,L (analogous to the argument above), the coefficients cm,L will be given by

cm,L =

∫
u†m,L(x)E

UC,ideal(x)

=

NdNuc∑
n=1

∫
u†m,L(x)un,Λ(x)

∫
u†n,Λ(x

′)Eideal(x′).
(5)

Rearranging Eq. (5) would yield an intuitive term sandwiched in the middle:
∑

n un,Λ(x)u†n,Λ(x
′),

which is the orthogonal projector [65] onto the unit-cell basis functions. If the unit-cell basis
were complete, i.e. it spanned the space of all possible solutions, then that term would be a
delta function, Eq. (5) would simplify to the overlap of the ideal fields with the plane-wave
basis functions, and 100% efficiency would be possible. However, the unit-cell basis is not
complete: the periodic orders of the unit cell do not span the space of all possible solutions, there
is a mismatch between the ideal fields and the ideal periodic-diffraction-order fields, and this
shortcoming necessarily leads to efficiency losses.
Equation (5) can be evaluated for any unit-cell period Λ and numerical aperture, with the

resulting focusing-plane fields computed by Eq. (4). The intensity of the fields at the focal point,
relative to those of the ideal field Eideal, thereby represents an upper bound on the maximum
designable efficiency by a unit-cell approach. We plot the upper bound in Fig. 2(a), showing



Research Article Vol. 28, No. 5 / 2 March 2020 / Optics Express 6949

the steep dropoffs in maximum efficiency as numerical aperture increases. Figure 2(b) shows
the ideal and unit-cell-ideal fields at the exit plane of the metasurface, with the latter unable
to capture the necessarily rapid variations in phase and amplitude. The prediction of low
maximal efficiencies at high NA might seem incompatible with the results of Ref. [27], where
single-frequency, high-efficiency (approaching 90%), high-NA (0.8) devices are theoretically
simulated and experimentally demonstrated. However, the efficiencies reported in Ref. [27]
are polarization-conversion efficiencies across the full transmitted wave, not efficiencies of
power concentration at the focal point, which are certainly significantly smaller, offering no
contradiction with our theoretical predictions.

Fig. 2. (a) Upper bounds to the single-frequency focusing efficiency of a metalens designed
by a unit-cell approach. (Shown for a 2D metalens with diameter L = 100λ.) For high
numerical apertures, there is a significant efficiency loss incurred by the unit-cell approach,
especially for unit-cell periods Λ close to but smaller than the wavelength λ, where there is a
single diffraction order (Nd = 1) and the best theoretical efficiency may only be 20%. Inset:
variation of the maximum efficiency as a function of period, with abrupt discontinuities
as new orders appear. (b) Optimal fields, real part (upper) and phase (lower), of the ideal
metalens (blue) and the ideal unit-cell design (orange), showing that non-periodic nature of
the focusing fields leads to amplitude and phase inaccuracies in the unit-cell approach.

We emphasize that the efficiency upper bound accounts only for the incompleteness of the
unit-cell basis (including effects such as insufficient spatial sampling of the phase [66,67]); it
assumes no further losses due to multiple-scattering effects between non-identical neighboring
cells (that violate the local-periodicity assumption), and thus almost certainly overestimates the
maximum efficiency possible in a unit-cell approach. Even so, these modal-decomposition bounds
predict significant efficiency losses for unit-cell-based high-numerical-aperture metalenses. An
alternative is to design the entire device at once, a task of significant complexity where inverse
design may be ideal.

3. Metalens inverse design framework

Inverse design requires specification of a figure of merit as well as the geometrical degrees of
freedom. To determine the focusing properties of a given metalens geometry, we compute the
fields at an exit plane of the metasurface and project them to the far field. The plane-wave
decomposition at the exit plane is given by

E(x) = 1
A

∑
i

ciε̂ieiki ·x =
∑

i
ciEi(x) (6)

where ki thewavevector of each planewave, i a discretized order comprising angle and polarization,
and ε̂i is the polarization unit-vector. For the figure of merit (FOM), we use a measure of the
overlap between the exit-plane electric field, with field coefficients ci, with a “target” field, the
time-reversed (conjugated) field emanating from an electric dipole at the desired focal point, with
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field coefficients ctari :

F =
1
2

∑
i
|c∗i c

tar
i |

2, (7)

where the asterisk denotes complex conjugation. Equation (7) is a function of frequency, and
independent of a global phase in the vector of coefficients ctari , since we do not want to fix the
phase of the field at the focal point. To optimize broadband focusing, one could maximize the
frequency average of the overlap in Eq. (7), but optimizations of the average tend to converge
to solutions with very good performance at isolated frequencies but poor performance across
much of the bandwidth of interest. Instead, a more robust approach is to optimize the worst-case
performance across the bandwidth of interest, ensuring that every frequency achieves at least a
modest if not exceptional level of efficiency. Such approaches generally fall under the umbrella
of “minimax” optimizations [48], though since our natural metric is one of maximization, we
technically use maximin over the geometrical degrees of freedom and the frequency range of
interest:

max
geo
[min
ω
F (E)]. (8)

We find that use of the minimax approach leads to nearly constant response over broad bandwidths.
In all of the designs presented below, we use TiO2 as the metalens material, incorporating its
dispersion across visible wavelengths [68]. For the geometrical degrees of freedom, we allow the
density of TiO2 to vary between 0 and 1 at every point in the structure (a “topology optimization”
approach), and then add penalty functions [12] to Eq. (8) to enforce a binary-material constraint
(ultimately converging to densities of 0 and 1 at every point). In some cases we also enforce the
constraint of constant permittivity in one (z) direction, akin to a slab that can be fabricated by
conventional lithography techniques. The initial density parameters are determined based on
random distribution within the range between 0.45 and 0.55.
The critical step in inverse design is the efficient computation of the gradient with respect

to the arbitrarily many geometrical degrees of freedom, to discover efficient updates from one
geometry to the next. Instead of independently simulating every geometrical perturbation, by
reciprocity (or its generalization for nonreciprocal media [69]), one can use a single coherent set
of dipole sources, with spatially dependent amplitudes determined by the form of the figure of
merit, to compute an “adjoint” field that in one simulation provides information about all possible
perturbations [70]. For a metric with the form of Eq. (7), the current sources for the adjoint
simulation are given by Jadj = −iωPadj = −iω∂F/∂E (Ref. [14]), which on the exit plane of the
metalens are given by:

Jadj(x) = −iω
∂F

∂E

= −
iω
2

∑
i

ci |ctari |
2E∗i (x).

(9)

The derivative of F with respect to E is computed by inverting Eq. (6), i.e. ci =
∫
A E∗i (x) · E(x),

where A is the area of the exit plane. Per Eq. (9), the adjoint sources can be physically
interpreted as a weighted combination of time-reversed plane wave modes “back-propagated”
(as in deep-learning neural networks [39–41]) into the design region of the metalens. Once
the adjoint fields are known, the gradient of F with respect to permittivity perturbations δε
can be computed from the variation ∂F/∂ε(x) = Re

[
E(x) · Eadj(x)

]
. These derivatives can

then be used in gradient descent (as we use), or quasi-first-order methods that may lead to
faster convergence but require more complex implementations (especially in tandem with binary
penalization of the permittivity voxels).
The plane-wave-decomposition approach to metalens inverse design is depicted in Fig. (a).

We simulate every geometry with Meep, a free-software implementation [71] of the finite-
difference time-domain (FDTD) method [72]. We consider broad-bandwidth response for



Research Article Vol. 28, No. 5 / 2 March 2020 / Optics Express 6951

450–700nm wavelengths, representing a large 43% relative bandwidth. We optimize the fields
at 20 wavelengths in this range and verify that the optimal devices have a smooth spectral
response at substantially higher resolution (120 wavelengths). (We found that optimizing with 10
frequency points or fewer may lead to highly oscillatory frequency response with wide deviations
within the visible-frequency bandwidth at intermediate, non-optimized frequencies, as shown in
the Appendix.) The maximin metric of Eq. (8) is not differentiable everywhere, caused by by
frequency crossings whereby infinitesimal geometric perturbations cause the lowest-efficiency
frequency to change. This can be handled by a standard optimization transformation to epigraph
form [73], in which a dummy scalar variable is maximized, and the value of F in Eq. (7) at each
frequency becomes an inequality constraint, but for metalenses that are many wavelengths in
size, with many frequencies to be computed, this can require substantial data storage. Instead,
for every geometry we select only the minimum-efficiency frequency’s gradient and use that as
the gradient for the more general FOM, which is the correct gradient everywhere that the FOM
is differentiable. In theory such an approach could lead to oscillations and slow convergence,
but in practice we see relatively good convergence to high-quality bandwidth-averaged response
(as shown in the Appendix. Figure 15). The dummy-variable approach may lead to even better
performance, though at the expense of much greater memory requirements. With our approach,
each iteration takes approximately 45 seconds on 25 cores in our computational cluster (Intel
Xeon E5-2660 v4 3.2 GHz processors). The least-squares figure of merit rapidly improves then
converges in about 200 iterations, after which the geometric penalization transforms the grayscale
design to a binary one, which is a slow process (on the order of 2000 iterations) but which results
in little-to-no efficiency losses. By further improving the penalization process, the total number
of iterations could be reduced to a few hundred.

4. Achromatic metalens design

In this section, we design metalenses across a range of low to high numerical apertures, achieving
relatively high efficiencies for each optimal device. We assume two-dimensional devices with
thicknesses of 250 nm and widths of 12.5 µm, with the latter chosen to be large enough (≈ 20λ)
to require large phase variations but small enough for relatively fast optimizations. In the
Appendixwe demonstrate 2D designs with similar efficiencies for widths up to 60λ, as well
as fully 3D metalens designs. For simplicity we do not incorporate a particular substrate,
though again in the Appendix we demonstrate similar performance for an optimized device on a
substrate. We use TiO2 for the material, and incorporate its material dispersion [68] by fitting a
Lorentz–Drude model to the susceptibility. A transverse magnetic wave is used for the incident
field. For the geometric “pixels,” we enforce a 25 nm minimum size to avoid non-robust, highly
sensitive designs that are difficult to fabricate (validation with a finer grid spacing shown in
Fig. 16). We also verify robustness after optimization by simulating material imperfections in
the optimized designs, which retain high efficiency even for moderate geometrical imperfections.

We have designed optimal metalenses at each of the 10 numerical apertures 0.1, . . . , 0.9, 0.99,
with their efficiencies plotted in Fig. (d). We include further characteristic data for each in
the Appendix; in the remainder of the section, we highlight and discuss three of the designs,
at NA = 0.1, 0.9, and 0.99. All geometrical degrees of freedom for each design are included
in the Appendix. The designs must achieve exquisite control of phase and amplitude over a
broad bandwidth in a multiple-scattering physical system; accordingly, it is difficult to physically
interpret the real-space profiles of the optimal structures.

4.1. Low-NA, high-efficiency metalens

All broadband metalens designs to date [2–5,8,9,21] operate in the low-NA regime. Thus, we
start with low-NA designs for a more direct comparison, and we demonstrate higher efficiencies
than the current state-of-the-art.
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For 12.5 µm width and 250 nm thickness, a 0.1-NA device has a 60 µm focal length, depicted
in Fig. 3(a). As shown in Fig. 3(b), the designed device achieves an average focusing efficiency of
65% and a maximum efficiency of 78% (minimum efficiency of 43%) over visible wavelengths
(450 – 700 nm). We use the same definition of focusing efficiency as Ref. [8]: the ratio of
the power concentrated within the region out to the first electric-field minimum divided by the
total incident power (including all reflection loss). The focal length remains nearly constant
over wavelength. Any focal-length deviations remain within the depth of focus as measured
by the full-width half-max of the field intensity. As shown in Fig. 3(c), the focused electric
fields are nearly diffraction-limited, and are even narrower than the diffraction limit at shorter
wavelengths. (Imperfect focusing efficiencies enable sub-diffraction-limited fields [64,74].)
Figure 3(d) shows the optimized structure, comprising an alternating series of TiO2 blocks and

Fig. 3. NA = 0.1, high-efficiency achromatic metalens for visible wavelengths (450 – 700
nm) using a lithography-compatible “Const-z” geometry. (a) Metalens dimensions. (Not to
scale.) (b) Focusing efficiency and focal lengths of the optimized metalens. The average
efficiency is 65% over visible spectrum and minimum efficiency of 43%. The efficiency
was calculated by power within the first minimum point divided by the incidence power.
Calculated focal lengths remain within the depth of focus area at all wavelengths. (c)
Full-width half-maximum (FWHM) of the optimized metalens and the corresponding Airy
disk. (d) Optimized TiO2-based metalens design. (e) Normalized intensity (|E |2) profile.
The curves are normalized intensity profiles at the focal plane.
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air holes. Considering the high-level geometric patterning, the density of TiO2 increases from
the lens edge to its center, as also seen in unit-cell-based designs [8,9]. On the other hand,
very distinguishable from unit-cell designs, the small-scale geometrical variations are clearly
non-periodic. Figure 3(e) shows the electric-field intensity profiles over many wavelengths,
exhibiting clear high focusing efficiency; despite significant variations in the near-zone fields
as the wavelength changes, each wavelength depicted (and all intermediate wavelengths not
shown) produce focusing at the same focal plane. The images in Fig. 3 show the entire simulation
region with no stray fields unaccounted for. Further increases in focusing efficiency would
be possible with materials that have less dispersion than TiO2. We enforced relatively large
minimum features sizes (25 nm), for fabrication compatibility; smaller feature sizes may yield
modest further efficiency improvements.

4.2. High-NA metalens, NA = 0.9

In this subsection we design and demonstrate high-NA broadband achromatic metalenses. The
optimal device, shown in Fig. 4(a), has the same dimensions as the NA=0.1 lens while the
target focal length is now 3 µm. The optimal-device focal length, shown in Fig. 4(b), is nearly
unchanged over visible wavelengths, and the focusing efficiency ranges from 13% to 32% with
an average value of 23%. As expected, the focusing efficiency is smaller than for the low-NA

Fig. 4. High-NA (NA = 0.9) achromatic metalens for visible wavelengths. (a) Metalens
dimensions. (b) Focusing efficiency and focal lengths of the optimized metalens. The
average efficiency is 23% over visible spectrum and minimum efficiency of 13%. (c) FWHM
of the optimized metalens and the corresponding Airy disk. (d) Optimized metalens design.
(e) Normalized intensity (|E |2) profile everywhere (images) and at the focal plane (curves).
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device, due to the increased difficulty of focusing light to a closer point over the same frequency
bandwidth. The FWHM of the optimized metalens is slightly larger than that of the diffraction
limited lens. As shown in Fig. 4(d), the optimized device structure is again clearly non-periodic,
with rapid changes in topology that accommodate the ≈ 12 intervals of 0 to 2π phase change
required at these dimensions. Normalized intensity (|E |2) profiles are shown in Fig. 4(e) for 8
selected wavelengths. The 450-nm-wavelength intensity profile (blue) shows a primary focal
spot at the desired length of 3µm as well as a second focal spot at 1.9µm, which arises due to the
relatively low focusing efficiency at that wavelength. To further improve efficiency of the high
NA achromatic metalens, as we discussed in the previous section, one could use a much finer
resolution of the structure up to fabrication limit. This is illustrated by the fact that increasing the
degrees of freedom with a “freeform” topology varying in the z direction improves the average
focusing efficiency from 23% to 41% for 0.9 NA metalenses, as shown in Fig. (d).

4.3. Very-high-NA freeform metalens, NA=0.99

In this section, we probe the extreme limit of high-NA design, relaxing the constant-z topology
constraint and designing a freeform-topology device that achieves NA = 0.99. The optimized
device has 12.5 µm width, 500 nm thickness, and a focal length now of 0.9 µm, as depicted in
Fig. 5(a). The focal length shown in Fig. 4(b) is again nearly constant over visible frequencies and
the average focusing efficiency is 27% and minimum efficiency of 23%. This result shows much
higher efficiency compared to the same NA constant-z structure metalens due to the increased
degrees of freedom. The FWHM of the optimized metalens is slightly larger than that of the
diffraction limited lens. As shown in Fig. 5(d), the optimized structure exhibits diagonal patterns

Fig. 5. Near-unity-NA (NA = 0.99) achromatic metalens achieved by inverse design of a
freeform geometry. (a,b) Metalens dimensionsi, focusing efficiency, and focal lengths. (c)
FWHM of the optimized metalens and the corresponding Airy disk. (d) Optimal design. (e)
Normalized field-intensity profiles.
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that presumably help redirect the light towards the nearby focal spot. Normalized intensity (|E|2)
profile is shown in Fig. 5(e) for 8 selected wavelengths. It shows clear focal spots at the target
focal plane (0.9 µm) over the visible spectrum.

5. Conclusions

In this work, we have demonstrated the capability for inverse design to discover high-efficiency
achromatic metalenses across the visible spectrum. We focused on 2D devices, to enable rapid
systematic design of devices for ten different numerical apertures and two topologies (const-z and
freeform), as well as the many optimizations with varying initial conditions and hyperparameter
choices for each case. In the Appendix we demonstrate two generalizations: to larger diameters
(up to 60λ) with very similar efficiencies, and to similarly sized 3D metalens devices. Our results
corroborate those from the literature demonstrating that there is not a significant dropoff from 2D
device designs [2,3,75] to their 3D counterparts [8,9,21,28].
Through inverse design, we have demonstrated the highest-efficiency low-NA achromatic

metalenses to date, as well as the first theoretical demonstration of broadband high-NA structures.
Breaking the local-periodicity assumptions of the unit-cell design approach results in significant
enhancements in device efficiency and a new regime for performance. Scaling this approach
to macroscopic length scales should be possible with emerging fast-solver techniques. A
natural concern with increasing the size scale will be the scalability of inverse design, yet
the efficiency of giga-scale adjoint-variable gradient-based optimization has been proven in
two other domains: deep learning, where networks with billions of parameters are trained
efficiently, and aerodynamic design [76], where optimal distributions of more than a billion
voxels can be achieved. Macroscopic metalens inverse design would offer significant advantages
for applications including wearable optical devices, microscopy and integrated optics.

6. Appendix

6.1. Material-dispersion simulation verification

In this work, Finite Difference Time Domain (FDTD) method is used to solve a full Maxwell
equation [71,72]. FDTD can cover a wide range of frequencies with a single time domain
simulation. However, it requires time-domain modeling of material dispersion. We model
the dispersion of TiO2 material with Drude model and validate the material modeling with a
theoretical calculation of Fabry-Perot oscillations in a 1D dielectric slab as shown in Fig. 6.

Fig. 6. Simulated and calculated reflection and transmission of 100-nm-thick TiO2 dielectric
slab. They match very well over the visible spectrum.



Research Article Vol. 28, No. 5 / 2 March 2020 / Optics Express 6956

6.2. Achromatic metalenses with a glass substrate

Metalenses are generally fabricated on transparent substrates. Here, we demonstrate achromatic
metalenses with SiO2 substrate (n = 1.5). The incidence power is calculated within the glass
substrate. As shown in Fig. 7(a), the optimized device has 250 nm thickness, 12.5 µm width,
and 8.2 µm focal length, which corresponds to NA = 0.6. As shown in Fig. 7(b), a calculated
average focusing efficiency is 32 % and minimum efficiency is 19% over visible wavelengths
(450 – 700 nm) while the highest efficiency is 39 %. The focusing efficiency is defined as the
ratio of the E-field intensity within the first minimum point and the incidence power [8]. As
shown in Fig. 7(c), the calculated full-width half-maximum (FWHM) over visible wavelength is
very close to the diffraction limited FWHM except for the longer wavelength. Figure 7(d) shows
the optimized structure which is feasible to existing lithography techniques [29,77]. Figure 7(e)
shows E-field intensity profiles at the focal plane. Except for the 700nm wavelength, they are
very close to diffraction limited focal spots.

Fig. 7. Achromatic metalens for the visible wavelength (450 – 700 nm) with substrate
(n = 1.5) (a) Schematic illustration of metalens dimension. (b) Focusing efficiency of the
optimized metalens. The average efficiency is 32 % and minimum efficiency of 19% over the
visible spectrum. The efficiency was calculated by the power within the first minimum point
divided by the incidence power. (c) Full Width Half Maximum (FWHM) of the optimized
metalens and the corresponding airy disk. (d) Optimized TiO2 based metalens structure.
The width and thickness of the metalens are 12.5 µm and 250 nm, respectively. 25 nm grid
spacing was used. The maximum aspect ratio is 10. (e) Normalized intensity (|E|2) profile.

6.3. Least-squares optimal coefficients

In the main text, we solve for optimal unit-cell coefficients to achieve a desired field distribution.
In the setup of the problem, there is a given field E(x) that can be decomposed into an orthonormal
basis of functions Ei(x) and coefficients ci, and a target field Etar(x) that one would like E(x) to
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most closely approximately, i.e., there is a functional F of the coefficients ci to be minimized:

min
ci

F(ci) = min
ci
‖Etar − E(x)‖22 = min

ci

Etar −
∑

i
ciEi(x)

2
2

. (10)

In the main text we stated that the optimal coefficients are given by

ci =

∫
E∗i · Etar. (11)

This statement is a well-known result for linear least squares problems. Here, we provide a short
proof in this context.
For any given i, we can compute the value of ci for which ∂F/∂ci equals 0. In fact, we must

carefully consider both the real and imaginary parts of ci; instead, we can use the complex CR
calculus [78], whereby ci and its conjugate ci

∗ are formally considered independent variables, and
the derivatives of F with respect to each must be zero. Since F is real-valued the two derivatives
contain redundant information, and only one must be set to zero; for simplicity in the ultimately
derivation, we choose the derivative with respect to ci

∗:

∂F
∂ci∗

= −

∫
E∗i ·

(
Etar −

∑
j

cjEj

)
= −

∫
E∗i · Etar + ci,

(12)

where in the latter expressionwe have used the orthonormality of the basis functions,
∫

E∗j ·Ei = δij.
Thus the condition for zero first derivative requires Eq. (11) to hold; as the only extremum it
must also be the minimum, thus proving that it is the solution to the minimization problem.

6.4. Summary of optimized metalenses for various numerical apertures using translation
invariant geometry

We demonstrated low to high NA metalenses in the main text. Here, we attach detailed optimized
structures and efficiencies at the visible wavelength. As shown in Fig. 8, the optimized structures,
in the macroscopic view, have a gradually varying TiO2 filling ratio over device radial direction.
The speed of this variation increases over increasing NA. Figure 9 shows achieved efficiencies
for various NA (0.1 – 0.9) using translation invariant geometry.

6.5. Summary of optimized metalenses for various numerical apertures using freeform
geometry

The numerical aperture (NA) versus efficiencies plot is shown in the main text. The optimized
geometries and efficiencies data are shown in Figs. 10 and 11. It might be hard to figure out any
physical insight from the optimized geometries. Again, in the macroscopic view, they seem to
have a gradually varying TiO2 filling ratio over device radial direction.

6.6. Analysis of larger device size

Large area design is a particular problem in the metalens community [67]. To address this issue,
we optimize metalenses with different device widths from 10 λ to 60 λ. NA is fixed to 0.3 and
then the device width is adjusted to see the focusing efficiency variation. The optimized structure
is translational invariant geometry with the 250-nm-thick TiO2 material. As shown in Fig. 12,
the average efficiencies are close to 40 % for different device sizes. There is no sign of significant
efficiency drop for larger devices. Note that it was tested up to the 60 λ long device where our
computational capacity can handle.
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Fig. 8. Optimized metalenses for various NA (0.1 – 0.9) using translation invariant geometry.
The thickness and width are 250 nm and 12.5 µm, respectively. The minimum resolution is
25 nm with the maximum aspect ratio of 10.

Fig. 9. Achieved efficiency over 450 – 700 nm wavelength range for various NA (0.1 – 0.9)
using translation invariant geometry. The red curves are focusing efficiencies (as defined in
the main text).
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Fig. 10. Optimized metalenses for various NA (0.1 – 0.9) using freeform geometry. The
thickness and width are 500 nm and 12.5 µm, respectively. The minimum resolution is 25
nm.

Fig. 11. Achieved efficiency over 450 – 700 nm wavelength range for various NA (0.1 –
0.9) using freeform geometry. The red curves are focusing efficiencies (as defined in the
main text).
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Fig. 12. Average focusing efficiencies for different device sizes.

6.7. Frequency sensitivity study

Early metalens works have demonstrated discrete operating wavelengths [2,3,29]. Then, in
order to achieve a pure achromatic operation, all of phase profile, group delay, and group delay
dispersion are modeled by the unit cell approach [8]. Also, densely selected wavelengths [4,9,21]
could also realize a continuous achromatic metalenses. The former should work well for a certain
bandwidth centered at the selected wavelength. However, many studies using the latter method
do not check the performance over continuous bandwidth. Here, we optimize an achromatic
metalens with 10 discrete wavelengths ranging from 450 nm to 700 nm for NA = 0.99, which
corresponds to ∆λ = 35 nm. As shown in Fig. 13, the selected ten wavelengths show 31 %
average efficiency and minimum efficiency of 20% while the average efficiency calculated with
finer ∆λ is only about 18 % and minimum efficiency of 1%. This implies that many existing
achromatic metalenses which were evaluated at well separated wavelengths may only work at
those wavelengths.

Fig. 13. Frequency sensitivity study for NA = 0.99 metalens. (a) The optimization was
initially performed over 10 discrete wavelengths (blue circled data), then the performance of
metalens was plotted over 30 wavelengths (red curve) to check the broadband operation where
the efficiency dropped from 31 % (10 wavelengths calculation) to 18 % (30 wavelengths
calculation). The minimum efficiency in the 10 wavelengths optimization is 20 % while
the minimum efficiency in 30 wavelengths validation is 1 %. (b) Focusing efficiency of NA
= 0.1, 0.9, 0.99 metalenses demonstrated in this work. The black dots indicate 20 target
wavelengths within the visible spectrum while the solid lines represent evaluation at 120
wavelengths.
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6.8. Metalens design in 3D

In the main text, we demonstrated 2D achromatic metalenses due to the limit of our computational
resource. Here, we present a relatively small 3D achromatic Metalens to validate our methodology
in 3D. The diameter of the lens is 7.5 µm and thickness is 250 nm. The focal length is 15.0 µm
which corresponds to NA = 0.25. Figure 14(a) shows the optimized 3D achromatic metalens in
top view. The black region indicates TiO2 and the white region indicates air. The focal length
remains nearly constant at three target frequencies (450, 650, 850 nm). The electric-field intensity
profiles at the focal plane (z = 15.0 µm) is shown in Fig. 14(b). Note that this is a preliminary
result of designing 3D achromatic metalens. To further improve this result, it may require (1)
smaller feature sizes (2) a better angular resolution in order decomposition (3) a good guess on
initial geometry parameters. The two formers can be resolved with a greater computing resource
while the latter may need theoretical study [57].

Fig. 14. Optimized 3D metalens. Thickness of device is 0.25 um and lens diameter is 7.5
µm and NA is 0.25 (a) top view of the 3D metalens. (b) E-field intensity at the focal plane.

6.9. Figure of merit convergence over inverse design iteration

Fig. 15. Figure of merit evolution by iteration over the course of the design process. The
intensity is normalized against that of the Airy disc. The steepest descent method might
cause FOM values oscillation after they are converged to the local optima.

6.10. Mesh-convergence study
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Fig. 16. Validation of mesh-size accuracy for NA = 0.6 achromatic metalens in freeform.
Focusing efficiencies are plotted over visible spectrum for the three mesh sizes shown here,
the average focusing efficiences are 63.4%, 63.0%, and 63.3% for λ/20, λ/40, and λ/80
mesh sizes, respectively.
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