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Abstract: This article reviews the material properties that enable maximum optical response.
We highlight theoretical results that enable shape-independent quantification of material “figures
of merit,” ranging from classical sum rules to more recent single-frequency scattering bounds.
A key delineation at optical frequencies is between polaritonic materials that support highly
subwavelength resonances and dielectric materials that can have vanishingly small loss rates.
We discuss the key metrics that enable comparisons both within these material classes and
between them. We discuss analogous metrics for 2D materials, and point to applications for
which rigorous comparison can be made between bulk- and 2D-material approaches. The various
results highlight the synergy between materials discovery and theoretical nanophotonic bounds,
and point to opportunities in achieving new extremes in light–matter interactions.
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1. Introduction

As material discovery proceeds at a rapid pace [1–21], and atomistic control promises the
possibility of “designer” materials [22–25], there is a fundamental question to be answered: what
material properties should the optical-materials community aim to synthesize? In the field of
nanophotonics, for many applications the goal is to maximize the interaction of light with matter,
manifested by absorption and/or scattering [26–31], quality factor [32–38], spontaneous-emission
rate [39–42], and related response functions [43–46], for frequency bands ranging from the near
ultraviolet to the far infrared. In this Review, we survey the key metrics that have been identified
for maximum optical response. Across the broad landscape of polaritonic, dielectric, and 2D
materials, we use experimental optical-constant data in tandem with these metrics to identify
especially promising materials and material characteristics at optical frequencies.

At any frequency, one can divide the landscape of nonmagnetic materials into two categories:
those whose permittivities have negative real parts, thereby supporting quasistatic plasmonic
and polaritonic resonances (with caveats discussed below), and those with positive real parts.
Following standard terminology, we call the former “polaritonic” materials and the latter
“dielectric” materials, though by this definition the category a physical material belongs to
often changes with the frequency of interest. The reason for this delineation is the significant
differences in the resonator properties of the two materials. For polaritonic materials (Sec. 2), it is
possible and typically desirable to support quasistatic resonances with extremely subwavelength
confinement of electromagnetic waves [47–50], with a length scale decoupled from the free-space
wavelength and a resonant frequency determined by the material permittivity and a shape-
associated parameter (the depolarization factor). The dominant loss mechanism is dissipation
(absorption), and for materials with electric susceptibilities χ(ω) (measuring howmuch a material
is polarized in response to an electric field, also related to relative permittivity ε via χ = ε − 1),
there are two key metrics pertaining to dissipation: an “inverse resistivity” |χ |2/Im χ (Ref.
[51]), and a material quality factor proportional to [∂(Re χ)/∂ω] /Im χ (Ref. [52]). By contrast,
dielectric materials (Sec. 3) require patterning at sizes at the scale of wavelength [53–55], and
radiative coupling (e.g. surface roughness) is typically the dominant loss mechanism. For these
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materials, a sum rule (generalized from Ref. [56]) dictates that the all-frequency response is
constrained by the real part of the refractive index, n, which becomes a key metric of interest. In
Sec. 4, we review two known ways to compare between the two material categories: a sum rule
that equates total scattering response to the total number of electrons in the scatterer [57,58],
and recent “power-bandwidth” limits that enable comparison over any bandwidth from 0 to∞
[59]. We include comparisons between the two and show that it is possible in many scenarios
to quantitatively determine whether polaritonic or dielectric approaches are optimal. Finally,
looking forward, we examine new avenues of exploration at the intersection of optical-material
synthesis and maximum nanophotonic response (Sec. 5).
Given the excitement over recent material breakthroughs, there are a few recent reviews

surveying various aspects of the field [20,21,49,55,60–64]. In this review, we include and
emphasize only those material characteristics that can be shown to be globally optimal for some
application; moreover, we require such optimality to be independent of the underlying structure
or geometry of the system. We do not include analyses or properties that are only true for,
e.g., spheres or planar surfaces (see Refs. [55,65–69], which is by no means a comprehensive
list); instead, we show that in fact there is now extensive theoretical understanding about
structure-independent optimal material properties.

2. Polaritonic materials

Polaritonic materials at optical frequencies benefit from the strong coupling of light to free
electrons, but at the cost of significant absorption. To what extent can absorption losses be
avoided, for large scattering or high-Q resonances? In this section we highlight two results
that answer this question: bounds on the largest single-frequency response possible (Sec. 2.1)
and bounds on the highest quality factor possible (Sec. 2.2), yielding two metrics (|χ |2/Im χ
and [∂(Re χ)/∂ω] /Im χ, respectively, for bulk materials with susceptibilities χ) by which all
polaritonic materials can be compared. We also highlight the important role the real part of
the permittivity plays to determine the feasibility of achieving high-confinement polaritonic
resonances (Sec. 2.3). In Sec. 2.4 we highlight general bounds for maximum response in a
regime of high-radiative-efficiency plasmonics, and hybrid dielectric–metal structures that offer a
combination of high efficiency and large response, approaching their respective bounds. Finally,
we discuss the important role nonlocality plays at small length scales, and known bounds that
incorporate the relevant nonlocal parameters (Sec. 2.5).

2.1. Maximal single-frequency response

It has long been recognized that reducing material “loss” is critical for many plasmonics
applications, yet there are many possible loss rates to choose from: the imaginary part of the
susceptibility, the imaginary part of the refractive index, the real part of a material’s conductivity,
the inverse of its real resistivity, etc. One way to frame the question is in the context of scattering
problems: given an external excitation, what is the largest possible response (absorption,
scattering, etc.) from a given material? Ref. [51] develops a systematic answer to this question,
independent of particulars of the geometrical patterning. The idea stems from consideration of
the polarization currents P excited within the material, related to the electric field E via P = χE.
The rate at which energy is absorbed is proportional to

∫
V (Im χ) |E|2 =

(
Im χ/|χ |2

) ∫
V |P|

2,
and is proportional to the square of the magnitude of the polarization currents. By contrast, the
well-known optical theorem [66,70–72] dictates that the total extinction of the incident field (i.e.
sum of absorption and scattering) must be proportional to the imaginary part of a scattering
amplitude, which increases only linearly with the induced polarization currents. Extinction
must be larger than absorption, and yet absorption increases more rapidly with the magnitude
of the polarization currents. Constraining absorption to be smaller than extinction, which is
equivalent to requiring that scattered power be non-negative, thereby imposes a limit on the
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largest polarization currents that can be excited in any particular material. This constraint can
then be used to identify bounds on many optical-response functions. The exact form of the bound
depends on the application, but within each bound there is a “material figure of merit” (FOM)
f (ω) that dictates increased possible response based on the material properties. As first introduced
in Ref. [51], the material metric f (ω) encapsulates the tradeoff between resonant enhancement
and absorption. More generally, it maps out what materials are desirable, or to be avoided, for a
large variety of optical responses and independent of any particular geometry. (A similar analysis
[73] can be done for the induced surface currents in 2D materials with conductivity σ(ω).) For
any polaritonic material, the material metric is given by [51,73]

f (ω) =


|χ(ω)|2

Im χ(ω)
3D / bulk materials

Z0
|σ(ω)|2

Reσ(ω)
2D materials,

(1)

where the impedance of free space, Z0, is included in the 2D-material FOM to make it
dimensionless. This material metric determines the maximal single-frequency response for
many applications, including absorption, scattering, and local density of states [51,73,74], cross
density of states [59], near-field radiative heat transfer [75], high-radiative-efficiency plasmonics
[76], free-electron radiation [77], Raman scattering [78], and more. Equation (1) is for scalar,
nonmagnetic materials; more generally, with a tensor susceptibility χ or conductivity σ, the
material metric becomes

χ† (Im χ)−1 χ

2 (Ref. [51]) and Z0

σ† (Imσ)−1 σ

2 (Ref. [73]),

respectively, where ‖·‖2 denotes the matrix 2-norm [79].
Intuitively, the material metric of Eq. (1) (hereafter referred to as the “material FOM") makes

sense: larger absolute susceptibilities imply the ability to sustain large induced currents, while
the imaginary part of the susceptibility must dampen resonant response. Figure 1(a,b) compares
different polaritonic materials against the material FOM f (ω) for experimentally characterized
bulk and 2D materials. In the figure for bulk materials, across a spectrum ranging from the
extreme UV to the mid-infrared, there is a clear trend for increasing f (ω) with wavelength, which
can be attributed to Drude-like response in such materials. For a Drude susceptibility with
plasma frequency ωp and material loss rate γ, χ(ω) = −ω2

p/(ω
2 + iγω), the material FOM is

given by ω2
p/γω, and is therefore exactly proportional to wavelength. Variations from linear

dependence thus represent non-Drude features in the material susceptibilities. The increasing
material FOM with wavelength may be compensated by frequency-dependent constants in the
response function; for example, the far-field scattering bounds [51] multiply the material FOM by
a factor ω/c that exactly compensates a linear increase with wavelength. As we discuss further in
Sec. 2.3, the large values of |χ |2/Im χ for noble metals at infrared frequencies may represent
bounds that are not achievable in practice (due to infeasible synthesis requirements), in which
case polar-dielectric materials, transparent conducting oxides, and doped semiconductors may all
be viable alternatives. In the case of 2D materials, per Fig. 1(b), one can see that graphene with
a large Fermi level appears ideal at photon energies below 1 eV, while 2D Ag, Al, and Au all
perform very well at higher photon energies. In that figure we take the 2D-material limit from
bulk properties of the metals; intriguingly, ab-initio calculations suggest that actual single-layer
sheets of 2D materials may have significantly larger material FOM than their infinitely thin bulk
counterparts [97].

The bulk-material figure of merit of Eq. (1) appears in other contexts as well. For example, in
plasmonic waveguides, a designer often needs to balance the tradeoff between two important
performance metrics: field confinement and propagation length [60,98,99]. In such cases, the
tradeoff can be encoded by a single, combined metric. In fact, it is shown in Ref. [100] that
|χ |2/Im χ is the key material metric determining a geometry-independent limit to the tradeoff
between these two quantities. The essence of that derivation similarly approaches the problem
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Fig. 1. (a) Comparison of representative bulk, polaritonic (and/or lossy) materials via
the material figure of merit |χ(ω)|2/Im χ(ω). Conventional metals (Ag, Au, Al, Cu) [80]
outperform alternative plasmonic materials (aluminum-doped ZnO (AZO) [60], Dysprosium-
doped CdO (CdO:Dy) [81], SiC [82], TiN [83], ITO [84], doped InAs [85], n-type and p-type
Si [86]) in the visible and infrared (albeit at the expense of large permittivity real parts).
Drude material susceptibilities exhibit linear increases in material FOM as a function of
wavelength, explaining the linear trend in the figure. (b) Comparison of various 2D materials
by material FOM Z0

σ† (Imσ)−1 σ

2
(or Z0 |σ(ω)|2/Reσ(ω) in the scalar case). Here,

we compare: graphene at different Fermi levels [87] (solid black lines) and magnetic-biasing
[88] (dashed black line), AA-stacked bilayer graphene [89] (dark red), hBN [90] (green),
MoS2 [91] (purple), the anisotropic conductivity components of black phosphorus [63]
(BP, pink and dark purple), and three 2D metals [92], Al (red), Ag (blue), and Au (gold).
High-Fermi-level graphene and 2D silver offer the largest possible responses at infrared and
visible wavelengths, respectively. The inset compares graphene at THz frequencies [93–95]
to the topological insulator Bi2Se3 [96], which can have a surprisingly large FOM. For (b),
reprinted with permission from Ref. [73], American Chemical Society.

as one of identifying the maximum possible induced polarization currents. As a result, the
ideal material needs to have a large susceptibility magnitude for tight confinement of the mode
profile, and a small imaginary part of susceptibility for minimal material losses. (It has been
suggested [101–105] that the propagation length of a surface plasmon on a planar interface
follows an expression that ultimately is proportional to (Re ε)2/Im ε, which is very similar to the
material metric. However, this is derived with a Taylor expansion that is invalid on resonance, as
explained in Appendix E of Ref. [51]; the correct expression is in fact proportional to

√
Im χ,

which decreases as loss decreases, because of the concomitant reduction in group velocity. But
these arguments only apply to planar surfaces and patterned surfaces may more closely approach
the bound of Ref. [100].) The inverse of the material metric has also been identified as the
fundamental loss quantity to be minimized in metamaterial-based models [106].

Epsilon-near-zero materials [107,108] exhibit intriguing phenomena such as distorted channels
[109,110], high-directivity emission [111,112], and arbitrarily large phase velocities [113,114],
and offer the possibility for significant enhancement of nonlinear optical response [115–117].
But they do not offer any particular benefit for large linear response. At the frequency where the
real part of the permittivity crosses zero, the material FOM simplifies to [1 + (Im χ)]2 /Im χ,
which will tend to be significantly smaller than many of the values in Fig. 1(a), due to the modest
magnitude of χ.

An ideal polaritonic material has a purely real, negative permittivity with zero loss, in which
case the material FOM diverges. A real, negative permittivity over a nonzero, finite frequency
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band is compatible with causality requirements (e.g., the Kramers–Kronig relations), and in
theory ultra-low loss metals may be achievable in materials with artificially large lattice spacing
or in designer organometallic compounds [118]. The bounds for any physical power-flow quantity
cannot themselves diverge, and must be regularized by other effects in the presence of a lossless
material. In the case of cross-sections per volume, the bounds can diverge as nonzero response is
possible with arbitrarily small volumes. However, cross-sections themselves cannot diverge as
radiative losses must become dominant as absorptive losses go to zero [119–121]. In the near
field, there is not necessarily any radiative coupling; one form of regularization would be the
breakdown of a local bulk susceptibility at the large wavevectors that are accessible with very
small loss. In either scenario, lower-loss materials towards such regularizations would represent
improved response relative to the current state-of-the-art. From a microscopic perspective,
two fundamental sources of loss are intrinsic quantum linewidth broadening [122] as well as
inhomogeneous broadening, but typical metals exhibit higher losses than required by these
sources and thus significant improvements may be possible [123].

There has been significant effort inmitigating losses in polaritonicmaterials [50,60,118,131–135].
The synthesis techniques for a given material can dramatically affect the material FOM, as
depicted in Fig. 2. High-quality films of Ag and Au can be deposited using focused-ion-beam
lithography or other techniques [127]. However, it is shown that, up to a threshold, the thickness
of the film will adversely increase the optical loss [129,130]. The dielectric function of bulk
silver is sensitive to environmental conditions and influenced by extrinsic effects, such as surface,
impurity, and grain boundary scattering [128]. On the contrary, bulk gold is less sensitive to
sample morphology and variation between different bulk measurements [80,124,126] are mostly
likely caused by systematic errors [125]. There are other approaches to mitigating loss as well.
One approach is to engineer the free-carrier concentration [136–144]. Another is to use gain
media to compensate for loss [145–147]. Polar dielectrics supporting surface phonon-polaritons
tend to naturally have lower losses and are good polaritonic media at mid-infrared frequencies
[49,63,148,149]. While all these approaches help reduce loss as measured by the imaginary
part of susceptibility, they do not necessarily translate to an enhancement in the material FOM.
For example, reducing the free-carrier concentration decreases the magnitude of the real part
of susceptibility, in addition to decreasing its imaginary part, thus resulting in smaller material
FOM. Thus a useful measure of loss is the inverse of the material FOM, Im χ(ω)/|χ(ω)|2. Under
this metric, the various approaches mentioned above may not be very effective. Countertuitively,
measures that increase the imaginary part of the susceptibility could help reduce absorptive
losses.

2.2. Quality factor

Quality factor is another measure of loss, indicative of both the relative loss rate per cycle
in a resonator as well as the linewidth of the scattering contribution from a single resonance.
In general, it is a function of both the resonator geometry and its material properties, but for
high-confinement, highly subwavelength polaritonic resonances, the quasistatic nature of the
resonances implies that material loss is the dominant source of loss and is geometry independent.

Using simple integral relations for quasistatic fields, Ref. [52] derived the quality factor of any
low-loss polaritonic resonator, depending only on its susceptibility χ(ω):

Q =
ω

2

∂
∂ω [Re χ(ω)]

Im χ(ω)
. (2)

For Drude materials with loss rate γ, the Q-factor expression simplifies to Q = ω/γ. On physical
grounds, Khurgin [133] has pointed out that quasistatic resonances have vanishingly small
magnetic-field energies relative to their electric-field energies. The magnetic-field energy serves
the role of “kinetic energy” for the resonator, and is replaced by the kinetic inductance of the free
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Fig. 2. Figure of merit, f (ω) = |χ(ω)|2/Im χ(ω), of different experimental data
[80,124–130] for (a) Ag and (b) Au. The metric can vary dramatically even within
the same material, depending on the synthesis techniques and experimental conditions. The
names represent the authors from whom the data was obtained, and all of the curves are for
bulk, thick films except for the dashed black lines, which are for thin films.

electrons. Energy stored in the free electrons, however, will dissipate at a rate proportional to γ,
independent of the geometrical details of the structure.
Beyond the low-loss regime, Ref. [150] extends the result of Eq. (2) to any loss regime for

Drude-Lorentz-oscillator material models. For Drude-Lorentz oscillators with damping rates
Γn, they define a variable γmax(ω) that is a frequency-dependent weighted average of 1/2 times
the Γn rates, γmax(ω) =

∑
n θn(ω)Γn/2, where θ is a spectral weighting factor. Then the quality

factor is bounded below by a simple ratio of the resonant frequency ω to γmax [150]:

Q ≥
ω

2γmax(ω)
, (3)

where the extra factor of 2 in the denominator arises from the definition of γmax as a weighted
average of half of the Drude loss rates. Technically, Eq. (3) does not require a quasistatic
approximation, but it does require material losses to dominate relative to radiative losses.

These derivations can be adapted easily to 2D materials, by making the replacement ωχ(ω) →
iδS(x)σ(ω), where δS(x) is a delta function on the surface of the (not necessarily planar [151])
2D material. The analog of Eq. (2) for a 2D material is:

Q = −
ω2

2

∂
∂ω

[
Imσ(ω)

ω

]
Reσ(ω)

. (4)

Beyond the quasistatic approximation, it is possible to narrow the linewidth beyond the expressions
of Eqs. (2)–(4), through e.g. Fano resonances [152,153] and near-field coupling [154,155],
but such effects must necessarily occur at larger size scales, without the highly subwavelength
confinement available in the quasistatic limit.
Figure 3 plots the quality factor computed by Eq. (2) for a wide variety of materials. To

compare loss rates at very different frequencies, in Fig. 3(a) the Q factor of representative
materials is shown over a range of moderate values of the real parts of their permittivities.
Figure 3(b) shows the Q factors of many materials at the frequencies for which Re ε = −2,
where a subwavelength sphere exhibits a surface-plasmon or surface-phonon resonance. The Q
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factor near these resonances can be expressed as ω/γ where ω refers to the resonance frequency.
The Q factor tends to increase with wavelength because optical phonon lifetimes for polar
dielectrics are typically orders of magnitude larger than those of plasmonic metals, which more
than compensates for the (roughly an order-of-magnitude) reduction in resonance frequency.
Doped semiconductors are intermediate between the two classes, with their loss rates several
times smaller, but resonance frequencies slightly smaller, than their metal counterparts.

Fig. 3. (a) Quality factor (using Eq. (2),valid under quasistatic approximation) for repre-
sentative materials as a function of real part of permittivity. For Ag, optical constants were
obtained from both Palik [80] and Johnson and Christy (J&C) [124]. (b) Comparison of
quality factor (Eq. (2)) for different materials, ranging from polaritonic materials—metals,
metal alloys, and doped semiconductors—to polar dielectrics. Reprinted with permission
from Ref. [49], De Gruyter.

2.3. Real part of permittivity

Polaritonics in the mid-IR spectrum is rich with applications in sensing and selective thermal
emission [156–158], given that a wide variety of molecules exhibit fundamental vibrational
and rotational modes in the mid-IR and that blackbody emission peaks in this range for typical
temperatures [49,61,159]. As discussed above, metals can have very large material FOM
f (ω) = |χ |2/Im χ at such frequencies because the real parts of their permittivities tend to
scale as 1/ω2. However, achieving the corresponding scattering bounds may be unrealistic.
Achieving polaritonic resonances in materials with large negative real permittivities may require
difficult-to-fabricate feature sizes. As an example, for ellipsoids to have a quasistatic /plasmonic
resonance at a particular frequency requires their depolarization factors L (parameters associated
with scatterer shapes) to equal Re(−1/χ) (Ref. [51]), which requires increasingly large aspect
ratios as L = Re(−1/χ) → 0. As an example, for a resonance at 5 µm wavelength in silver
would require an aspect ratio greater than 50, whereas the highest aspect ratios fabricated to date
are roughly 30 (Ref. [160]). It is possible to shift resonances to longer wavelengths without
high aspect ratios by increasing their size, and correspondingly the radiative damping, but the
confinement is reduced and the materials start behaving more like perfect conductors rather
than plasmonic materials [85]. Large, negative real part of permittivities are also undesirable
for certain transformation-optics based devices and applications. For instance, Ref. [161] has
designed a non-magnetic, cylindrical cloak at optical frequencies that require the real part of
permittivity of the constituent metal wires to have a similar magnitude to that of the surrounding
dielectric.
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Figure 4 compares the magnitude of Re ε for various polaritonic materials in the visible and
infrared spectrum. The shaded region corresponds to permittivity values whose real parts are
between -2 and -16.9, which for nanorod-like ellipsoidal nanoparticles maps to aspect ratios
from 1 to 5. This may be considered the region within which true quasistatic resonances can be
achieved.

Fig. 4. Comparison of (negative) Re ε of various polaritonic materials for a wide range
of frequencies, ranging from visible to mid-IR. The pink shaded region shows the allowed
range of Re ε for realistic aspect ratio of 1 to 5 for a prolate spheroid. Given this range,
conventional metals are ideal in the visible, whereas alternative plasmonic materials are
suited for infrared spectrum. The extent to which the real part of permittivity of different
materials responds to wavelength varies, with SiC demonstrating very small wavelength
range over the pink shaded region and doped InAs the largest in the mid-IR.

A subtlety that arises for high-loss materials is that the negativity of the real part of the
permittivity no longer becomes the true delineation of whether a material supports quasistatic
polaritonic resonances. In quasistatic electromagnetism, Maxwell’s equations simplify to
Poisson’s equation for the quasistatic fields. Poisson’s equation can be transformed to a surface-
integral equation [74,162–166] for surface-charge configurations σ at all material interfaces, a
surface-integral equation that can be written in the form K̂σ−Λσ = −s, where K̂ is the Neumann-
Poincare operator [165–167] that is a Green’s-function convolution operator, Λ depends on the
material susceptibility χ (assuming vacuum exterior, easily generalizable) via Λ = 1/2 + 1/χ,
and s is a source term proportional to the incident field. The key aspect relevant to this discussion
is that in an eigendecomposition of K̂, the response will be maximal if the real part of −1/χ is
in the range [0, 1]. This is the true condition for plasmonic-like response for a lossy material:
Re(−1/χ) ∈ [0, 1], generalizing the simple negative-permittivity condition for materials with
nontrivial loss rates.

2.4. High-radiative-efficiency plasmonics

In the preceding sections, it was emphasized that one wants quasistatic resonances for maximum
confinement in polaritonic response, and that coupling to radiative channels reduces such response.
Yet for applications where high radiative efficiency is important, in areas such as far-field imaging
[28,168], photovoltaics [169,170], and quantum nanophotonics [171], it is important to identify
bounds that incorporate radiative-efficiency constraints. This problem is considered in Ref. [76],
where it is shown that for both far-field scattering and near-field LDOS quantities, one can derive
bounds with the additional constraint of high radiative efficiencies. In particular, the results of
Ref. [76] show that imposing a minimum radiative efficiency ηmin (for hard-to-achieve radiative
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efficiencies above 50%) effectively reduces the maximum possible scattering response by a factor
ηmin (1 − ηmin) /4, in which case one can define the material FOM by

f (ω) =
ηmin (1 − ηmin)

4
|χ(ω)|2

Im χ(ω)
. (5)

The new material FOM, given by Eq. (5), explicitly identifies the tradeoff in response that must
be sacrificed to achieve high radiative efficiency.
The radiative-efficiency-constrained bounds enable comparison [76] of all-metal [172–176]

and hybrid metal–dielectric [76,177,178] approaches to high-radiative-efficiency plasmonics.
Shown in Fig. 5 is one set of findings from Ref. [76]: a hybrid silicon-on-silver resonator could
have superior plasmonic properties to an all-silver resonator when radiative-efficiency constraints
are included. Shown in Fig. 5(a-d) are the absorption and scattering cross-sections of silicon-only,
silicon–silver, and silver-only optimized resonator designs, with the hybrid silicon-on-silver
resonator showing the largest scattering cross-sections per volume. Moreover, as shown in
Fig. 5(e), these resonators approach their scattering-efficiency bounds, including the metric of
Eq. (5). Also shown in Fig. 5(e) are the bounds for silver-only and gold-only nanoresonators,
which lie below the actual scattering performance of the designed silicon-on-silver structure
(solid blue lines). This implies that there is no silver-only or gold-only approach that can ever
do better than the designed silicon-on-silver structure, no matter how optimized the patterning
is. This shows the power of such bounds: they convey the ability to survey a research field and
rank-order certain approaches relative to each other. As shown in Ref. [76], the hybrid structures
are also superior to metal-only structures for near-field spontaneous-emission enhancements at
high radiative efficiency.

2.5. Nonlocal effects

Another important consideration is the effect of nonlocality in material susceptibilities for media
synthesized at single-nanometer length scales, whereby the polarization currents induced at
a point x are related to the electromagnetic fields at another point x′. Such effects both shift
resonant frequencies [179–182] as well as dampen the maximal possible response [73,183,184].
Reference [73] considers the maximum response when the material susceptibility is described
in a hydrodynamic framework, where the currents behave like fluids with a diffusion constant
D and convection constant β (both real-valued), in which case the current is the solution of
a convection–diffusion equation driven by the electric fields. In a quasistatic framework that
is relevant at the length scales where such effects are important, one can show [73] that the
cross-section bounds depend on a competition of two “rates:” the material FOM f (ω), and a
second term relating the size of the scatterer to the “diffusion” length in the material. If one
defines a radius r of the smallest bounding sphere containing the scatterer, and a plasmonic
diffusion length `D =

√
cD/ω2

p, for plasma frequency ωp, the maximum extinction cross-section
per area of a 2D-material scatterer is given by [73]

σext
A
≤


(
Z0
|σloc |

2

Reσloc

)−1
+

(
r2

`2D

)−1
−1

, (6)

where σloc is the local contribution to the conductivity. Equation (6) shows a dramatic reduction
in response at size scales well below `D, serving both to illuminate the effects of nonlocality
as well as potentially serving as a means to extract the value of `D itself for any 2D material
from experimental measurements. The analog of Eq. (6) for bulk materials is straightforward,
replacing the first term with the material FOM f (ω) from Eq. (1) and the second term from a
volume integral instead of a surface integral. An intriguing next step would be to consider the
bounds that are possible in ab-initio material models.
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Fig. 5. Schematic of hybrid dielectric–metal resonator, as shown in the top left. Scattering
and absorption cross sections of (a) Si cylinder in free-space and (b,c) Si and Ag cylinders,
respectively, above a semi-infinite Ag substrate with gap thickness g = 2 nm. Geometrical
parameters (insets) are chosen to align their resonant wavelengths at 700 nm. The three
structures are all illuminated by normally incident plane waves. In (b,c), the absorption
includes the dissipation in both the particle and the substrate. (d) The dielectric–metal
structure shows the highest per-volume scattering cross-section, because it simultaneously
achieves large scattering cross-section σsca, high radiative efficiency η, and small particle
volume V . (e) In the visible regime, the scattering capabilities of metal–metal geometries
(Ag–Ag and Au–Au bounds), free-space metallic (Ag bound), and free-space dielectric
(Si free-space) scatterers all fall short when compared with the dielectric–metal (Si–Ag)
scatterer, which also approaches its own upper bound. For the Si–Ag and Ag–Ag structures,
the gap size is fixed at 5 nm; the cylinder (both Si and Ag) height h ranges from 40 to 60
nm in order to tune the resonant wavelength. Reprinted with permission from Ref. [76],
American Chemical Society.

3. High-index dielectric materials

Dielectric materials, with Re ε>0, can have very small material loss rates (so that Im χ → 0),
and their dominant loss channel is typically radiation. The positive real part of the permittivity
prevents such materials from supporting quasistatic, highly subwavelength resonances (though
very small mode volumes are possible [185–188]), and it elevates the importance of geometrical
patterning in their response. Independent of the patterning, however, there is an important
geometry-independent sum rule governing their response and identifying high refractive index as
a key metric for dielectric materials.

In a homogeneous medium with refractive index n (where n =
√
ε neglecting material losses),

the density of plane-wave electromagnetic states is proportional to n3 and ω2 at frequency ω (Ref.
[189]). If we consider an electric dipole radiating at a any point in the medium, it will efficiently
couple to half of these states (effectively the half with the same polarization). The power that it
radiates, and hence its spontaneous-emission rate, will be directly proportional to the density of
states, and is called the (electric) local density of states, LDOS [190]. The LDOS is a measure
of the relative energy density of modes at a given point in space relative to the total density of
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modes [191]. Denoting the free-space electric LDOS by ρ0, it is given by the expression [192]

ρ0(ω) =
n3ω2

2π2c3
. (7)

Now consider a dipolar source in a structured medium of refractive index n. For a point source at
some position x, the LDOS ρ(x,ω) is highly dependent on the position x, the frequency ω, and
the material and structuring. But, if one considers a certain integral over all frequencies (and
discard a near-field coupling term that typically, though not always, corresponds to emission into
material-absorption pathways), Barnett and Loudon showed [56] that there is a simplifying sum
rule from causality arguments. They considered a source point in vacuum, with a structured
medium surrounding it, and showed that the integral over all frequencies of the relative difference
between the structured-medium LDOS and the vacuum LDOS, i.e. (ρ − ρvac) /ρvac, is precisely
0. We can generalize their argument slightly, pointing out that if the source is in a medium
with constant refractive index n (over all frequencies), the same sum rule should apply to the
structured-medium LDOS relative to the background LDOS ρ0 for a homogeneous medium of
refractive index n, as given in Eq. (7). Then the generalization of the sum rule from Ref. [56] is∫ ∞

0

ρ(x,ω) − ρ0(ω)
ρ0(ω)

dω = 0. (8)

The sum rule of Eq. (8) states that for any patterning, the total LDOS of a system cannot be
modified, on average, over all frequencies. The LDOS can be increased in one frequency range,
but thereby must be reduced in another. The only way to increase LDOS over all frequencies is
by increasing the refractive index n of the medium itself, which increases ρ0(ω) by n3 per Eq. (7).
This highlights the key role that refractive index can play in maximizing light–matter interactions.

The role of refractive index to increase the available states has been recognized in a wide variety
of systems. Large refractive index enables smaller mode volumes [185–188] and correspondingly
large spontaneous-emission enhancements [193–195]. In a photonic-crystal cavity, a typical
defect mode has minimum mode volume ∼ (λ/2n)3, in which case larger refractive index widens
the bandgap and increases the spatial confinement of the mode [196–198]. In the quest for
miniaturization of nanophotonic “building blocks,” plasmonic split-ring resonators tend to exhibit
large absorption and can be difficult to fabricate and miniaturize at optical frequencies [199,200].
High-index dielectric nanoresonators exhibit strong electric and magnetic resonances [201]
and can help overcome such problems [202,203]. Large refractive index contrast between the
core and air helps to confine the light within the high index medium. As a result, the reduced
radiation loss improves the overall Q factors of the resonator [55]. High refractive index is also
necessary for the miniaturization of such nanoresonators [204], since the magnetic resonance of
a sphere occurs at a wavelength λ ≈ nd, where n is the refractive index and d is the diameter
of a sphere [202,203,205]. With nanoresonators as building blocks, a high-index material with
positive permittivity and unit permeability can create metamaterials with effective permittivities
and permeabilities across the four possible quadrants [206–208]. Nanoresonators with electric-
and magnetic-dipole resonances can be used to tailor scattering profiles [54,209–215]; as one
example, effective negative index can be used for Huygens’ metasurfaces with no reflection loss
and tailored forward scattering [216,217]. Alternatively, with only a single dipolar resonance,
one can create perfect electric reflectors with near-unity reflection due to the negligible loss of
the dielectric material [218,219]. Finally, magnetic reflectors feature maximum electric field at
the interface, dramatically enhancing light–matter interaction on that plane [220,221].

A classical application of the density-of-states enhancement associated with high index is for
absorption enhancement in solar cells. Random surface texturing on thick films with plane-wave-
like states enables full occupation of all of the internal states, an n3 enhancement relative to
external illumination from all angles. The intensity is enhanced in proportion to the product of
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the density of states with the wave speed, c/n, ultimately yielding the 4n2 Yablonovitch limit
to absorption enhancement [222,223]. Wavelength-scale pattering has enabled much thinner
structures to approach, though generally not surpass, the 4n2 limit [41,224–231].
Figures 6 and 7 show the refractive indices of many common high-index materials over

transparency windows at visible and infrared frequencies. Many of the materials that are
transparent in the visible and near-IR are polar dielectrics that support phonon polaritons,
and thus are not transparent in the mid-infrared. Conversely, many (though not all) of the
materials transparent in the mid-IR are not transparent in the visible/near-IR. One can see in

Fig. 6. Comparison of common high-index materials over transparent frequency ranges in
the visible and IR spectrum. Curves with blue colors represent materials transparent over
the visible and near-IR spectrum (MgF2 [232], SiO2 [233,234], Al2O3 [235], Si3N4 [236],
ZrO2 [237], LiNbO3 [238], GaN [239], ZnS [240,241], TiO2 [242], ZnSe [243]), and those
with red colors over the mid-IR (Si [244], ZnTe [245], GaAs [246], Ge [247], InP [248–250],
InAs [251], PbS [250,252], Te [253], PbSe [252], PbTe [254]). The chromatic dispersion for
the two classes of materials are measured at wavelengths of 500 nm and 5 µm respectively,
with darker shades corresponding to higher values of chromatic dispersion.

Fig. 7. Dispersion characteristics of high-index materials transparent over the visible and
infrared spectrum, as measured by the chromatic dispersion dn/dλ over representative visible
and infrared wavelength of 500 nm and 5 µm respectively. Materials with higher refractive
indices tend to be more dispersive.
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both figures that the mid-IR-transparent materials tend to exhibit larger values of n relative to
visible/near-IR-transparent materials, consistent with various models showing that the refractive
index for semiconductors tends to increase with smaller energy gaps [204,255–258]. One tradeoff
that tends to come with higher refractive index is increased chromatic dispersion, as measured by
the derivative of the refractive index with respect to wavelength, i.e., dn/dλ. Figure 7 clearly
shows a nearly linear relationship between refractive index and chromatic dispersion. Thus an
important materials-synthesis question is whether higher-index materials with small chromatic
dispersion can be synthesized. Such materials would immediately improve the performance of a
wide variety of dielectric metasurfaces [259–269].

4. Comparing polaritonic and dielectric materials

Themetrics reviewed in Secs. (2, 3) are not compatible with each other, preventing straightforward
comparisons between polaritonic and dielectric media. The bounds in Sec. 2 are inversely
proportional to the loss rate of the material, which is practically 0 for many dielectric media.
Conversely, the refractive-index sum rule of Sec. 3 does not account for the surface waves that
are so important in polaritonic media. In this section, we highlight two measures that enable
direct comparison of the two systems: total electron number for all-frequency response (Sec.
4.1), and recently developed power–bandwidth metrics for any bandwidth of interest (Sec. 4.2).

4.1. Electron number

The total number of electrons Ne in a system is a key property to describe the maximum response
of any material. Causality requires any linear electromagnetic response function to be analytic
in the upper half of the complex-frequency plane [270], which enables contour-integral-based
“sum rules” to connect response averaged over all frequencies to certain constants of the scatterer.
In quantum systems, this leads to the well-known Thomas–Reiche–Kuhn sum rule (or “f-sum”
rule) [271–275], which relates the sum of oscillator strengths for energy level transitions to the
electron number. One can apply this technique to the extinction cross-section of any optical
scatterer, σext(ω), yielding the sum rule [57,58]:∫ ∞

0
σext(ω) dω =

πω2
p

2c
V =

πe2

2ε0mec
Ne ≈ 1.67 × 10−5Ne [m2s−1], (9)

where ωp is the effective plasma frequency of the material (defined by electron density ne through
ωp = ene2/ε0me) and V is the volume it occupies. Equation (9) says that the extinction of light
summed over all frequencies is determined by the number of electrons in the scatterer, independent
of its geometry and the incident-field polarization. In Ref. [58], extinction cross-sections are
computed for different canonical geometries and materials including aluminum and silicon,
verifying that the sum rule is indeed independent of the nanostructure and material platform. To
maximize frequency-integrated extinction, it is advantageous to use materials with large electron
number. However, Eq. (9) does not provide any guarantees about which frequency ranges will
contain the resonances. The sum rule requires susceptibilities that satisfy Kramers–Kronig
relations, diminishing to zero at high frequencies. The decay-to-zero requirement, though
physically reasonable, means that even “dielectric” media (semiconductors, insulators, etc.) have
a plasma-like response at large enough frequencies. Such response contributes to integrated
extinction, often in a large way due to the negative susceptibility. This obscures the behavior
of, for example, a transparent dielectric at optical frequencies, by accounting for transitions that
occur at UV and X-ray frequencies and which can be the dominant contributor to the response of
Eq. (9).
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4.2. Maximal response over nonzero, finite bandwidth

While the Thomas–Reiche–Kuhn sum rule provides information on integrated optical cross
section, it does not provide spectral information over any finite bandwidth and often overestimates
dielectric-material interactions as described above—the sum rule weighs the entire spectrum
equally instead of isolating particular frequencies of interest. To remedy these shortcomings, Ref.
[59] establishes power–bandwidth limits by combining causality principles, which underlie the
sum rules discussed in Sec. 3 and Sec. 4.1, with the energy-conservation principles underlying
the single-frequency bounds of Sec. 2. The resulting bounds enable comparisons between
polaritonic and dielectric media, and yield the single-frequency and all-frequency bounds in
their respective asymptotic limits. The key is to connect the frequency-averaged response over a
bandwidth ∆ω around a center frequency ω0 to a single complex-valued frequency ω = ω0 + i∆ω
(Ref. [59,186,276]). (This simple form emerges for a Lorentzian average; other averaging
“windows” can be used [59,186].) Then one can derive bounds that depend on material figures of
merit for which the material parameters χ or σ are evaluated at this complex frequency, i.e. χ(ω)
or σ(ω). For nonmagnetic materials with bulk susceptibilities χ(ω) or 2D conductivities σ(ω),
the material FOM (not to be confused with Eq. (1), which holds only for single frequencies) is
given by [59]:

f (ω = ω0 + i∆ω) =


|ωχ |2 + |ωχ | ∆ω

|ω | Im (ωε)
3D / bulk materials

|σ(ω)|2

Reσ(ω)
2D materials.

(10)

(For the general case of anisotropic, magnetic, and even spatially inhomogeneous media, see the
Supplemental Material of Ref. [59].) It is evident from Eq. (10) that the material FOM over any
nonzero bandwidth yields a finite value even for lossless materials (due to the imaginary part of
ω, given by Imω = ∆ω), and thus enables comparison among all possible optical materials. The
FOM for 2D materials has an identical functional form (albeit with a complex frequency) as the
single-frequency 2D-material FOM, Eq. (1), whereas the functional form of the bulk-material
FOM is now slightly more complex in Eq. (10) than its single-frequency counterpart in Eq. (1).
As in the single-frequency case, the material FOM in Eq. (10) favors large |χ(ω)| and small
Im χ(ω) (and similarly for 2D materials), now evaluated at the complex frequency ω = ω0 + i∆ω.
One can identify intuitive forms of the material FOMs for small bandwidth (∆ω � ω0), for
which the material FOM simplifies to [59]:

f (ω) ≈



|χ(ω)|2

Im χ(ω)
lossy (e.g. polaritonic)

ω0
∆ω

[χ(ω)]2

χ(ω) + 1
lossless (dielectric)

|σ(ω)|2

Reσ(ω)
2D materials,

(11)

where the 2D material FOM retains its original simple form. For high-index lossless materials
[59]:

f (ω) ≈
ω0
∆ω

χ(ω) =
ω0
∆ω

(
n2 − 1

)
lossless, high-index. (12)

The material FOM for metals in the small-bandwidth limit is dictated by material loss Im χ(ω),
whereas the FOM for lossless materials (dielectrics) is dictated by relative bandwidth ∆ω/ω0.
Lossy materials simplify to the single-frequency metric |χ |2/Im χ because the bandwidth of
their resonant response is dictated by material loss, and their single-frequency response can be
maintained over the whole bandwidth ∆ω. The material FOM for lossless high-index materials is
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consistent with the metrics of Sec. 3, where we saw that all-frequency response is determined by
the refractive index; the material FOM of Eq. (12) increases in proportion to ω0 over ∆ω, which
can be interpreted as the possibility for resonant amplification of the typical n2 enhancement
in a resonator with Q-factor given by ω0/∆ω. No assumption of single-mode or quasistatic
behavior is made in Eq. (11), which holds for any number of resonances as well as more complex
phenomena such as Fano interactions [152,153] and exceptional points [277,278].
Figure 8 compares the material FOM for a large variety of materials at optical frequencies.

On the left side of the figure is the material FOM for canonical material types: (a) a Drude
metal, χ(ω) = −ω2

p/(ω
2 + iγω), for plasma frequency ωp and loss rate γ, (d) a lossless,

Fig. 8. (a,d,g) Isocurves of material FOM for a Drude metal (with material loss rate
γ = 0.1ωp), a lossless dielectric (of susceptibility χ = 9), and a Drude 2D material (with
γ = 0.01ωp). The arrows indicate increasing material FOM in each case. (b) Comparison of
material FOM for various bulk metals and polaritonic materials (those supporting surface-
phonon polaritons) / dielectrics, keeping the bandwidth-to-center-frequency ratio ∆ω/ω0
fixed to 0.1. Part (c) compares surface-phonon-polariton-supporting materials at mid-IR
wavelengths. (e),(f) Comparison of material FOM for varying bandwidths relative to the
center wavelengths of 1.55 and 10 µm. At very narrow bandwidths, dielectrics offer greater
possible response than metals. (h,i) Comparison of material FOM for 2D materials for
different choices of center wavelength and ∆ω/ω0. (2D Al, Ag, and Au properties derived
from their bulk counterparts.) Reprinted with permission from Ref. [59], APS.
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constant-susceptibility (χ(ω) = 9) material, and (g) a “Drude” 2D material, with conductivity
σ(ω) = iωp/(ω+iγ). One can see that these three material types show very different characteristic
dependencies of their FOM on frequency and bandwidth. The Drude-metal FOM is nearly
independent of bandwidth for small-to-moderate bandwidths and increases with the center
wavelength (of the frequency band of interest), λ0. On the other hand, a dielectric with constant
permittivity is independent of center wavelength, and highly dependent on the bandwidth. Finally,
2D Drude conductors are somewhere in between. Loss originates from both the material
parameter γ as well as the bandwidth, and the material FOM favors small bandwidth and large
wavelength (for a large conductivity). These simplified permittivity/conductivity models describe
the key features of the FOM for real materials, as the plots in Fig. 8(b,c,h) follow the same
trends as those in Fig. 8(a,d,g): the material FOM for metals increases with wavelength, whereas
dielectrics (Si and SiC) and polaritonic materials (SiO2 and TiO2) that support surface-phonon
polaritons at mid-IR frequencies [47] are relatively constant with wavelength. Conversely, the
plots in Fig. 8(e,f,i) show the effects of increasing bandwidth, with the FOM values nearly
unchanged for metals but those of the dielectrics and polaritonic materials decreasing nearly
linearly. The material FOM of 2D conductors increases with both wavelength and smaller
bandwidths.

5. Looking forward

The results highlighted in this paper demonstrate a synergy between experimental materials
discovery and theoretical nanophotonic bounds. There are now a number of key metrics by
which materials can be evaluated for optical performance. Looking forward, these results
prompt new questions in a variety of directions. First, the metrics can drive new-material
synthesis, whether for moderative-negative-permittivity polaritonic material with particularly
small loss (as measured by Im χ/|χ |2) or for dielectric materials with particularly large refractive
indices n and small chromatic dispersion. From a theoretical perspective, a quantum-mechanical
analysis may suggest constituent atoms or alternative approaches to achieving anomalously large
material figures of merit, or they may provide insight through novel bounds on how large such
metrics can be. There is also the question of which materials are optimal for quantum-photonic
applications, where high radiative efficiency (as discussed in Sec. 2.4) is important, and a number
of considerations beyond maximum response may be desirable. This highlights another area
for exploration—alternative nanophotonic metrics. Beyond maximum response, quantities such
as nonreciprocal transmission, isolation, selectivity, and others may be desirable [279–282];
bounds on such response functions may introduce new material metrics for such scenarios. Active
nanophotonic platforms offer another area for exploration, with metrics such as switching speed
taking increased importance. These examples provide a glimpse at the fertile opportunity for
better understanding of the extreme limits of light–matter interactions.
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