Conservation-Law-Based Global Bounds to Quantum Optimal Control

Hanwen Zhang\(^\text{1,2}\), Zeyu Kuang\(^\text{1,2}\), Shruti Puri\(^\text{1,3}\), and Owen D. Miller\(^\text{1,2}\)

\(^1\)Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
\(^2\)Energy Sciences Institute, Yale University, New Haven, Connecticut 06511, USA
\(^3\)Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA

(Received 13 May 2021; revised 7 August 2021; accepted 9 August 2021; published 10 September 2021)

Active control of quantum systems enables diverse applications ranging from quantum computation to manipulation of molecular processes. Maximum speeds and related bounds have been identified from uncertainty principles and related inequalities, but such bounds utilize only coarse system information and loosen significantly in the presence of constraints and complex interaction dynamics. We show that an integral-equation-based formulation of conservation laws in quantum dynamics leads to a systematic framework for identifying fundamental limits to any quantum control scenario. We demonstrate the utility of our bounds in three scenarios—three-level driving, decoherence suppression, and maximum-fidelity gate implementations—and show that in each case our bounds are tight or nearly so. Global bounds complement local-optimization-based designs, illuminating performance levels that may be possible, as well as those that cannot be surpassed.

DOI: 10.1103/PhysRevLett.127.110506

In this Letter, we develop a framework for computing fundamental limits to what is possible via control of quantum systems. We show that quantum control problems can be transformed to quadratically constrained quadratic programs (QCQPs), with generalized probability conservation laws as the constraints, adapting a mathematical approach recently developed for light-matter interactions \[1,2\]. The QCQP formulation enables global bounds via relaxations to semidefinite programs \[3,4\]. We demonstrate the power and utility of our method on three prototype systems: (1) three-level system driving, where our bounds incorporate sophisticated information about interference between levels and can account for constraints on undesirable transitions (as needed in transmons \[5\], for example), (2) upper bounds to the suppression of decoherence, and (3) the maximum fidelity of a control-based implementation of a single-qubit Hadamard gate. In each case, we supplement our bounds with many local-optimization-based solutions, showing that they come quite close to (and in some cases achieve) our bounds, suggesting that our bounds are tight or nearly so. Our framework applies to open and closed systems, can be extended to related domains in NMR \[6–8\] and quantum complexity \[9–11\], and should reveal the limits of what is possible with quantum control.

Quantum control \[12–16\] refers to the design and synthesis of efficient control sequences that drive a quantum system to maximize a desired objective, such as maximizing overlap with a target state or minimizing error in the implementation of a gate operation. Recent experiments have demonstrated the power of optimal control for wide-ranging applications \[17–22\]. Because the wave function \(|\psi(t)\rangle\) that represents a quantum state is nonlinear in the control parameter \(\epsilon(t)\), it is generically difficult to identify globally optimal controls. One strategy is to use local numerical optimization over the control parameters [e.g., gradient-ascent pulse engineering (GRAPE) \[6,23–25\], the Krotov method \[26–31\], and the chopped random basis technique \[32,33\]], optimizing over many initial conditions in the hopes of identifying high-performance local optima. Yet, except in the simplest of systems, one is left uncertain about the best performance possible. Alternatively, there are a variety of global bounds \[34–55\]—most famously, the Mandelstam-Tamm (MT) bound. The MT bound is a prototype of “quantum speed limits,” which more generally have varying levels of complexity but are essentially time-energy uncertainty relations \[34–37,40,44,45,52–56\]. The energy measure is typically a matrix norm of the Hamiltonian, but more complex details of the system interactions are not captured. Another class of bounds is obtained by analytically solving Pontryagin’s maximum principle \[57\], which is only possible in simple cases such as two-level systems \[38,39,42,43,46–48\]. Consequently, meaningful, accurate bounds cannot be computed for most quantum control systems of interest.

Formulation.—We consider a Hamiltonian of the form \(H_0(t) + H_c(t) = H_0(t) + \epsilon(t)H_c(t)\), where \(H_0\) is the non-controllable part of the Hamiltonian, \(H_c\) is the controllable part, and \(\epsilon\) is the control parameter to be optimized. We assume the control parameter is bounded between 0 and \(\epsilon_{\text{max}}\) (any other minimum value can be shifted to 0 by replacing \(H_c\) with \(H_0 + \epsilon_{\text{min}}H_c\)). Our method generalizes to any number of control parameters (cf. Supplemental Material \[58\]), but for simplicity we assume one
A term of the form εβcan extend the domain of the integrals back to the entire integral form (equivalent to the Dyson equation \[67,68\] in the interaction picture),

\[U(t, t_0) = U_0(t, t_0) - \frac{i}{\hbar} \int_{t_0}^{T} G_{0\uparrow}(t, t') H^\dagger_c(t') U(t', t_0) dt', \]

where \(U_0 \) and \(G_{0\uparrow} \) are the time-evolution operator and retarded Green’s function in the absence of controls [i.e., for \(H_0(t) \)], and \(T \) is the final time. To derive conservation laws, we start by taking the product of Eq. (1) with \(U^\dagger(t, t_0) H^\dagger_c(t) D_i(t) \) from the left and integrating from an initial time \(t_0 \) to \(T \),

\[\int_{t_0}^{T} U^\dagger(t, t_0) H^\dagger_c(t) D_i(t) U(t, t_0) dt \]

\[+ \frac{i}{\hbar} \int_{t_0}^{T} \int_{t_0}^{T} U^\dagger(t, t_0) H^\dagger_c(t) D_i(t) G_{0\uparrow}(t, t') \]

\[\times H^\dagger_c(t') U(t', t_0) dt'dt' \]

\[= \int_{t_0}^{T} U^\dagger(t, t_0) H^\dagger_c(t) D_i(t) U_0(t, t_0) dt. \]

The variable \(D_i(t) \) can be any time-dependent operator and is an optimization hyperparameter below in Eq. (5); intuitively, allowing different possible choices of \(D_i \) enables the isolation of particular times and elements in Hilbert space for which Eq. (2) should be satisfied. The variable \(H^\dagger_c \) is effectively a renormalization that simplifies the probabilistic interpretation below; equivalently, it can be omitted. The constraint of Eq. (2) depends on both the time-evolution degrees of freedom \(U(t) \) and the control variable degrees of freedom \(\epsilon(t) \). However, if we define a new variable \(\Phi(t) = \epsilon(t) H^\dagger_c(t) U(t, t_0) \), this variable (the analog of a polarization field in electrodynamics \[1,69\]) can subsume both. Crucially, we can replace any instance of \(\epsilon(t) \) with \(\epsilon_\text{max} \). This can be thought of as a two-step simplification: one could restrict the domains of the integrals to only times in which the control is on, in which case such a replacement is trivial. Next, \(\epsilon(t) \) only appears in a term of the form \(\Phi \epsilon^{-1} \Phi \), which is zero even when \(\epsilon(t) = 0 \), due to the quadratic dependence on \(\Phi \). Hence, we can extend the domain of the integrals back to the entire time interval from \(t_0 \) to \(T \). Such “domain obliviousness” \[1\] arises from our inclusion of \(\epsilon(t) \) and \(U^\dagger(t, t_0) \) in the product term. Finally, we have the constraints

\[\int_{t_0}^{T} \int_{t_0}^{T} \Phi^\dagger(t) D_i(t) \left(\frac{H^{-1}_c(t)}{\epsilon_\text{max}} \delta(t - t') + \frac{i}{\hbar} G_{0\uparrow}(t, t') \right) \]

\[\times \Phi(t') dt'dt' \]

\[= \int_{t_0}^{T} \Phi^\dagger(t) D_i(t) U_0(t, t_0) dt, \]

where \(H^{-1}_c \) is taken to be the pseudoinverse if \(H^\dagger_c \) is not invertible. For any \(D_i(t) \), Eq. (3) is a quadratic equation in the variable \(\Phi(t) \); the set of all possible \(D_i(t) \) imply an infinite number of quadratic constraints.

Equation (3) can be interpreted as a generalization of probability conservation. At any time \(t_1 \), conservation of probability implies unitarity of the time-evolution operator \(U(t_1, t_0) \), such that \(U^\dagger U = I \), where \(I \) is the identity operator. From the integral equation for \(U \), Eq. (1), the difference \(U^\dagger U - I \) can be written

\[U^\dagger(t_1, t_0) U(t_1, t_0) - I \]

\[= \frac{1}{\hbar^2} \int_{t_0}^{t_1} \int_{t_0}^{t_1} \Phi^\dagger(t', t_0) U_0(t'', t') \Phi(t', t_0) dt'dt'' \]

\[+ \frac{2}{\hbar} \text{Im} \int_{t_0}^{t_1} U_0(t_0, t') \Phi(t', t_0) dt'. \]

If we take the imaginary part of Eq. (3), and choose \(D_i(t) \) to be the identity operator from \(t_0 \) to \(t_1 \) (and zero otherwise), the resulting constraint is precisely the one that requires the right-hand side of Eq. (4) to be zero (cf. Supplemental Material \[58\]). In other words, a subset of the constraints of Eq. (3) are those that enforce unitary evolution at all times. (In an open system described by a density matrix, unitarity is not preserved and the corresponding constraints instead represent conservation of probability flow, cf. Supplemental Material \[58\].)

Although our derivation implies only that the conservation laws of Eq. (3) are necessary conditions for describing quantum evolution, one can show that they are sufficient as well: any \(\Phi(t) \) that satisfies all possible versions of Eq. (3) implies a corresponding time-evolution operator \(U(t, t_0) \) that satisfies Eq. (1) (cf. Supplemental Material \[58\]). Hence, we can replace the differential or integral dynamical equations with the conservation-law constraints of Eq. (3).

The optimal-control problem, for any objective \(f \) that is a linear or quadratic function of the time-evolution operator \(U \), and therefore a linear or quadratic function of \(\Phi = \epsilon H^\dagger_c U \), is then the QCQP,

\[\max_\Phi \ f(\Phi) \]

such that \ Eq. (3) satisfied for all \(D_i(t) \).
Eq. (5) is a maximization of an objective of the form $\Phi^\dagger A\Phi + \text{Re}(\alpha^*\Phi)$, where A is Hermitian, subject to constraints of the form $\Phi^\dagger B_i\Phi + \text{Re}(\beta^i\Phi) = 0$ for all i. QCQPs are generically NP hard [71] to solve, but bounds on their solutions can be computed efficiently after semidefinite relaxation (SDR). SDRs transform quadratic forms $\Phi^\dagger A\Phi$ to equivalent linear forms $\text{Tr} AX$, where X is a rank-one positive semidefinite matrix, then drop the rank-one constraint. Finally, we are left with an objective of the form $\text{Tr} AX + \text{Re}(\alpha^*\Phi)$ subject to the constraints that $\text{Tr} B_i X + \text{Re}(\beta^i\Phi) = 0$ for all i and $X \geq 0$, which is a semidefinite program whose global optimum can be computed via interior-point methods [4,72]. As the bounds are computed over all possible matrices D_i, we label them “D-matrix bounds.” This framework applies broadly across quantum control; next, we demonstrate bounds for three prototypical systems.

Applications.—First, we compute bounds on driving three-level quantum systems. We consider two three-level systems described by Hamiltonians $H = \hbar \sum_{i=1,2} \omega_{ij} |i\rangle \langle j| - \epsilon(t) \sum_{i=0,1,2} \mu_{ij} |i\rangle \langle j|$, one modeling an asymmetric double-well potential, with exact parameters from Sec. 2.8 of Ref. [13] and given in the Supplemental Material [58], and a second modeling a weakly nonlinear harmonic oscillator with nearest-level couplings, as is typically used to model a transmon qubit [5,73]. (We consider both systems, as they have different features: the first, couplings between all levels, and the second, small anharmonicity with hard-to-avoid leakage.) In each case, we assume the system starts in the ground state $|0\rangle$ and that we want to drive it to the first excited state $|1\rangle$ as rapidly as possible. We denote the probability of occupying state i at time t by $P_i(t) = \langle i|\psi(t)\rangle^2$. There are two classes of bounds that we can compute: for a given amount of time T, the maximum probability in $|1\rangle$, $P_1(t)$—or, iteratively, the minimum amount of time to achieve near-unity probability in $|1\rangle$.

The black curve of Fig. 1(a) is the computed bound on $P_1(t)$ for the asymmetric double-well model, for a bounded-control field with $|\epsilon(t)| \leq 0.15$. The shaded region of the figure is impossible to reach: our bounds indicate that any such evolution would necessarily violate at least one of the conservation laws. The gray lines are the results of local computational optimizations; we implemented a gradient-ascent optimization (similar to GRAPE) as described in the Supplemental Material [58], for many different final times and initial pulse sequences. The gap between the local optimizations and the bounds arises from two sources—looseness in the bounds (from the SDR) or insufficient local exploration of the optimal pulses—though it is hard to pinpoint which source is more responsible. Also included in the figure are data points corresponding to evaluations of other bounds as applied to this problem: Mandelstam-Tamm, Margolus-Levitin (ML), and Refs. [54,55]. It takes some effort to map the various bounds to this problem, with varying degrees of looseness, which we discuss in detail in the Supplemental Material [58]. In particular, however, one can see that each of these bounds predicts minimal times an order of magnitude smaller than our approach. The inset provides a likely explanation: the optimal trajectory (highlighted in red) first populates the second excited state, then transitions to the first excited state through appropriate driving. Such complex dynamics cannot be captured by any previous bound approaches, but can be captured by our approach.

FIG. 1. (a) Bounds on the maximum probability in state $|1\rangle$ as a function of time (solid black) for an asymmetric double-well potential, with shading above to indicate impossible values. Gray lines represent pulse evolutions optimized by gradient ascent, with the red line the very best evolution for final time 30. Inset: evolution of probabilities in states $|0\rangle$, $|1\rangle$, $|2\rangle$ for the optimal control, showing the complex dynamics captured by the bound. Black diamonds: evaluations of bounds of Mandelstam-Tamm, Margolus-Levitin, and Refs. [54,55] for this problem. (b),(c) Analogous to (a) but for a three-level model of a transmon qubit. (d) Incorporation of an additional constraint requiring small maximum allowable excitation probabilities of state 2. The bound on the maximum state-$|1\rangle$ probability (at time 5) decreases accordingly. The time to achieve 99% state-$|1\rangle$ probability increases substantially with smaller allowed leakage rates.
Figures 1(b)–1(d) show results for the transmon-qubit model, with $\omega_1 = 0.19$, $\omega_2 = 0.37$, $\mu_{10} = \mu_{01} = -1$, $\mu_{21} = \mu_{12} = -\sqrt{2}$ (all other $\mu_{ij} = 0$), and $|\epsilon(t)| \leq 0.3$. Figures 1(b) and 1(c) are the transmon analogs of Fig. 1(a). The key novelty that is possible in this case is the addition of a constraint on the excitation probability of the second excited state [2]. Such “leakage” can be highly detrimental to the practical control of such systems, as they can open up additional decoherence channels [74]. In our approach, we can simply add to Eq. (5) a (quadratic) constraint on the maximum allowed probability in [2]. In Fig. 1(d), we show the bound for maximum $P_1(t)$ subject to varying constraints on the maximum allowed $P_2(t)$, at time $t = 5$, which shows the dramatic reduction that is required if state-|2⟩ transitions are to be avoided. Conversely, also in Fig. 1(d), the minimum time for near-unity first-state probability increases dramatically with more stringent constraints (red). Such constraints could not be incorporated into previous bound approaches.

A second example we consider is the extent to which one can prevent decoherence and dissipation due to interactions with the environment. The design of pulses to achieve such a goal has been studied extensively through semiheuristic “dynamic decoupling” design schemes [75–78], which may not be (and in many cases are not) globally optimal. A typical model of environmental effects is a spin system interacting with a spin bath. We consider a spin-bath system [79] with Hamiltonian $H_0 = H_S + H_E + H_{\text{int}}$, where H_S is the system Hamiltonian (two levels split by energy $\hbar \omega_0$), H_E is the Hamiltonian of the environmental bath $[H_E = -J \sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x + \lambda \sigma_j^z)]$, and H_{int} is the interaction between the system and the bath, $H_{\text{int}} = -\nu |\downarrow\rangle \langle \downarrow| \otimes \sum_j \sigma_j$, with $\omega_0 = \pi$, $J = 1$, $\lambda = 0.5$, and $\nu = 2$ here. The control Hamiltonian here is $H_c = \epsilon(t) \sigma_z$, on the system only. Rather than use an approximation to the environmental coupling [80], we model the full dynamics of the wave function $|\psi(t)\rangle$. As a result, we only use a bath of size $N = 2$. Despite the bath being unrealistically small, it provides a qualitatively accurate description of the decoherence process [81] and serves as a proof of principle. The system initial state is $(1/\sqrt{2})|\uparrow\rangle + (1/\sqrt{2})|\downarrow\rangle$, while the spin bath is in its ground state. The system density matrix ρ^S is found by tracing out the bath part of the full density matrix, $\rho(t) = |\psi(t)\rangle \langle \psi(t)|$. The objective is to maximize $|\rho^S_{12}|$, the magnitude of the off-diagonal element of ρ^S, which represents the coherence of the system state. Instead of working with the absolute value (or its square, which is quartic in $|\psi\rangle$), we equivalently maximize $f = \text{Re}(\rho^S_{12} e^{i\phi})$ for a given ϕ, and then iterate over possible values of ϕ between 0 and 2π. Figure 2 shows the bounds on maximal coherence as a function of time for three different bounded controls: $\epsilon_{\text{max}} = 0.5$, 1, and 2. Also included are actual evolutions for three cases: without control, with a pulse designed by gradient ascent, and pulses designed by a bounded-control version of dynamical decoupling termed “Eulerian Carr-Purcell” [82]. It is possible with strong controls to increase coherence at short times [as is particularly visible in Fig. 2(c)], but that would not be possible over longer timescales. We see that the bounds appear nearly tight and provide information about what levels of coherence are possible as a function of time.

For the third application, we consider the implementation of a single-qubit Hadamard gate. For a two-level system with Hamiltonian $H = \hbar \omega_0 \sigma_z - \mu \epsilon(t) \sigma_x$ ($\omega_0 = 0.0784$, $\mu = 1$) [13], the target time-evolution operator is given by $(1/\sqrt{2})(|\uparrow\rangle + |\downarrow\rangle)$. The objective is to compute the maximal fidelity of a quantum gate at time T; for computational purposes, it is easier to work with the square of fidelity, $f^2 = 1/4 \left| \text{Tr}\{U_{\text{int}} U(T)\} \right|^2$. Identifying when the bound approaches 1 then indicates the minimum possible time to perform a gate operation. We consider a bounded control with $\epsilon_{\text{max}} = 1$. A crucial difference in the gate problem is that multiple inputs map to multiple outputs; the off-diagonal elements of the D matrices in Eq. (3) inherently enforce the corresponding orthogonal-evolution requirement. Figure 3 shows the fidelity bound as a function of time (solid black), along with time evolutions for locally optimized pulse sequences in the colored lines.
Conclusions.—Quadratic constraints representing generalized probability-conservation laws offer a framework for quantum control bounds. We have shown that this method can be significantly tighter than previous bounds and more widely applicable. There are further extensions that may be possible as well: in nanophotonic design problems, a hierarchy of bounds with varying analytical and semi-analytical complexity have been discovered as subsets of the D-matrix constraints [1,2,59,83–93]; the same may be possible in quantum control. In particular, environment-induced decoherence and dissipation are similar to material-absorption losses in electromagnetism and may be amenable to general analytical bounds [83,87]. From an algorithmic perspective, there are significant computational speed-ups that should make the bound computations competitive with local design methods. More broadly, our approach and extensions thereof can be applied to problems across the quantum-control landscape, ranging from speed limits and gate fidelity to areas like NMR [6–8] and quantum complexity [9–11].

S.P. is supported by the Army Research Office (ARO) under Grant No. W911NF-18-1-0212.

