nature communications

Article

https://doi.org/10.1038/s41467-023-43221-2

All electromagnetic scattering bodies are
matrix-valued oscillators

Received: 10 April 2023

Accepted: 3 November 2023

Published online: 24 November 2023

M Check for updates

Lang Zhang', Francesco Monticone ®2 & Owen D. Miller®'

Scattering theory is the basis of all linear optical and photonic devices, whose
spectral response underpins wide-ranging applications from sensing to energy
conversion. Unlike the Shannon theory for communication channels, or the
Fano theory for electric circuits, understanding the limits of spectral wave
scattering remains a notoriously challenging open problem. We introduce a
mathematical scattering representation that inherently embeds fundamental
principles of causality and passivity into its elemental degrees of freedom. We
use this representation to reveal strong constraints in the mathematical
structure of scattered fields, and to develop a general theory of the maximum
radiative heat transfer in the near field, resolving a long-standing open ques-
tion. Our approach can be seamlessly applied to high-interest applications
across nanophotonics, and appears extensible to general classical and quan-

tum scattering theory.

Probing and harnessing the frequency dependence of electromagnetic
scattering underlies atomic spectroscopy, molecular sensing, infor-
mation and energy technologies, and more' . A key pillar of electro-
magnetic scattering theory is the decomposition of scatterers into
“resonators,” in which spectral response is determined by lifetimes and
coupling coefficients (or suitable generalizations) of resonant
modes™®. These “physical oscillators” enable complex scenarios to
often be well-described by a small number of parameters, and they
offer high-accuracy descriptive modeling. However, there is typically
no limit on the possible number, lifetimes, or couplings of the modes,
such that little can be said about their extreme limits. Mathematically,
the difficulty in finding extreme limits arises because the set of all
possible resonator designs is nonconvex. Hence physical oscillators
provide little prescriptive guidance: what lineshapes are physically
possible, and what are the ultimate limits of corralling broadband
radiation?

In lieu of resonator decompositions, passivity, and causality have
long been recognized as key constraints on broadband response in
linear physical systems without gain’™. Causality is implied by pas-
sivity, so that one need not separately invoke it, and the foundations of
linear system theory typically start with passivity”. Passivity-based
approaches to spectral response have yielded fundamental limits for
matching networks in circuit theory'®”, optical attenuation (e.g., in

stellar grains'®), material susceptibilities®*°, and more®. Yet passivity
itself is not a panacea, and electromagnetic scattering theory is a
domain where its application has been met with limited success.
Special linear-amplitude, “optical-theorem”-like power quantities have
bounds analogous to those for optical attenuation”-**, But the general
scattering properties of arbitrary systems are described by scattering
matrices S that map input excitations at any number of “port” (power-
carrying “channels” external to the scatterer) to their corresponding
outputs, and scattering S matrices have few (if any) practical spectral
limitations. Their analytic properties and representation theorems
have been extensively studied, from dispersion relations” and
Blaschke-product representations®™ to existence theorems for poles,
zeros, and their generalizations®, but known representations suffer
from the same issue as their coupled-mode counterparts: their degrees
of freedom reside in nonconvex (and often unbounded) sets. This
makes it difficult or impossible to identify optimal response, or upper
limits thereof, across the physical design spaces of scientists and
engineers.

The potential value of spectral-response bounds is highlighted by
a long-standing question in energy transport: what is the maximum
rate at which two bodies can radiatively exchange heat in the near
field? Going back many decades, it has been understood that radiative
heat exchange in the near field can be substantially larger than its far-
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field counterpart** ™, due to the enormous number of accessible
evanescent channels in addition to propagating ones, yet the max-
imum extent of this enhancement—with ramifications for applications
such as thermophotovoltaics”’*¢, photonic refrigeration®”, and heat-
assisted magnetic recording®—has been far less clear. Previous theo-
retical bounds*** have suggested strong material-electron-density
dependencies, unbounded response for low-loss materials, and
orders-of-magnitude gaps from known designs (>750X). The compu-
tational complexity of the problem has prohibited the application of
large-scale inverse design techniques, leaving unresolved whether
current designs are sub-optimal or the bounds are too loose.

In this article, we show that an alternative scattering matrix, the T
matrix”, can be represented by fictitious “mathematical oscillators”
that are ideally suited for probing optimal spectral response. We show
that passivity, in tandem with the specific interaction characteristics of
materials with electromagnetic waves in low- and high-frequency lim-
its, leads to T-matrix representations in terms of lossless
Drude-Lorentz and Drude-Lorentz-like oscillators with matrix-valued
(spatially nonlocal) coefficients. Crucially, the only degrees of freedom
of these oscillators are their matrix-valued coefficients, which are
constrained to a bounded, convex set. Such limitations must imply
strong constraints on scattering response, which we use to identify a
simple, general theoretical limit to near-field radiative heat transfer.
Our approach offers insights into why planar structures are better than
sharp-tip patterns, why unconventional plasmonic materials should
offer the largest enhancements, and yields material-independent
bounds within a small factor (5X) of state-of-the-art designs.

Results

Passivity constraints and oscillator representation

In linear, time-invariant electrodynamics, the T matrix is the linear
operator that relates electromagnetic fields incident upon a scatterer
to the polarization fields they induce®. For simplicity of notation and
exposition, we assume any standard spatial numerical discretization of
sufficiently high accuracy; we collate the incident fields E;,.(x) into a
vector e;,c and the polarization fields P(x) into a vector p, so that the
frequency-domain (¢ time convention) T-matrix is defined by

P(@)=T(w)ej(v), @

the  discrete  analog of the convolution equation
P(x,w)= [T(X,X,w)E,.(X', w)dx'. The T matrix can be derived from
first principles via integral operators (cf. Supplementary Note 1 or
ref. 35), and its time derivative (or product with —iw) can be interpreted
as an admittance matrix.

A passive scatterer in vacuum has a causal response function, such
that it is analytic in the upper-half plane and satisfied Kramers-Kronig
(KK) relations®™. We write the KK relation in terms of wT(w) to account
for possible simple poles at zero: by Cauchy’s residue theorem, for w in
the UHP, wT(w)= L [% “1) dw'. (Physically, T(w) must decay as 1/
w” at high frequencies, such that wT(w) is square integrable.) Taking

—00 W' —

the Hermitian part of this equation yields
Re[wT(w)]= L [ ¢MT@) qg'. Hence we can isolate the anti-
Hermitian part of T(w) as its only degrees of freedom:
wT(w)=Re[wT(w)]+ilm[wT(w)]
1/ 1 ,
= — + — . . . .
ﬂ[m L)i o iné(w — w;)|w;Im T(w;) dw; 2

1. 0 1
== lim

—w;Im T(w;) dw;.
Ty—0) o 0; —w—iy

To further compress to positive frequencies only, we exploit symme-
tries of T(w). The Hermitian matrix Z =w;lm T(w;) can be separated
into its reciprocal part X=(Z+7")/2 and its nonreciprocal part
Y=(Z—-2")/2. Realvalued time-domain fields require that

T(—w)=T"(w), which implies that X(—w)=X(w) and
Y(—w)= — Y(w). Then algebraic manipulations of Eq. (2) give
N e 1 w;
T(w)= E;I/LT), A m {X(wi)"' EY((U:') dw;. (€))

We provide an alternative derivation of the same expression in the
Methods section, by recognizing that —iwT is a passive admittance
matrix, which implies a Herglotz-Nevanlinna representation® that can
be reduced to Eq. (3). For any scattering problem there are at least six
matrices that satisfy an expression similar to Eq. (3): a scattering
matrix, an impedance matrix, and an admittance matrix, each defined
either in the volume or on a bounding surface. Yet only one of those six
—the volume admittance matrix (essentially, T(w))—appears to be
useful for wave-scattering bounds. While Eq. (3) reduces the degrees of
freedom to the anti-Hermitian part of T, additional passivity
considerations are needed to meaningfully constrain the possible
scattering response.

The next constraints come directly from passivity. Passivity means
that polarization fields do no net work. The work done by the incident
fields on the polarization currents J is 1Re [Ej,.-J=1Im [E; - wP.
Positivity of this expression implies that the anti-Hermitian part of
wT(w) is positive semidefinite, which we write @ Im T(w) > 0. (This is
equivalent to the condition that admittance matrices have a positive
semidefinite Hermitian part”.) This means that X(w) + Y(w) > O for any
real-valued w. Using the symmetry relations for X(w) and Y(w) around
w =0, we have the constraints X(w)+ Y(w) >0 and X(w) — Y(w) =0 at
positive frequencies, which further imply X(w) = 0. These constraints
are convex (though still unbounded) in X(w) and Y(w).

The final key element is the identification of sum rules. Sum rules
typically come from evaluation of KK relations in the limit @ > e or
w = 0. At infinite frequency, the electrons of a material can be regarded
as free, and material susceptibilities must scale as y(w) — —wf,/wz,
where wf, is proportional to the total electron density of the material®.
In this limit, the first Born approximation is asymptotically exact, and
the polarization field is given by P ~ yE;,. ~ —(w;/@?)E;, (in units
where the free-space permittivity is 1), implying that the T matrix
asymptotically approaches —(w,z, Jw?)1,,, where I, is the identity matrix
on the scatterer volume V. Inserting this limit into the KK relation
derived before Eq. (2) yields the high-frequency sum rule,

/Oc olmT(w)dw=2 /oC X(w)dw=nw}l,. 4)
J -0 JO

This sum rule constrains the total contributions from Im T'(w) over all
frequencies, a spatially resolved scattering generalization of the f sum
rule for material-susceptibility oscillator strengths*~°. The nonreci-
procal Y matrix makes no contribution to the integral due to its odd
symmetry around w=0. Similarly, the low-frequency asymptote is
known: we can write T(w — 0)=T,,, where T, is a Hermitian
positive semidefinite matrix in the static limit. Inserting this expression
into the KK relation derived before Eq. (2) yields a low-frequency sum
rule,

*©Im T (w) * X(w)
/_OCT da):Z/O o2 do=mTy),. Q)

For design problems, one considers many possible scatterer
domains V, each of which has different matrices on the right-hand
sides of the sum rules of (Egs. (4), (5). How, then, can one accom-
modate many possible designs? Here we can again make the (critical)
choice of the Hermitian/anti-Hermitian split in the KK relation, which,
as we prove in Methods, endows the sum rules with a monotonicity
property: enlarging V can only increase (in a positive semidefinite
sense) the right-hand sides of Eqs. (4), (5). Hence, for a designable
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Fig. 1| Oscillator structure in broadband scattering. a Schematic depiction of
plane waves incident upon an elliptical scatterer. b Scattered fields at points 1-3 of
(a), exhibiting seemingly random variations for a single plane wave incidence.

c Real and imaginary parts of the T'(w) matrix elements corresponding to the points
in (a), showing oscillator-like responses consistent with the KK relation. d All
eigenvalues of T(w) are positive at all frequencies, as a consequence of passivity.

e Convergence of a sum-rule integral for three upper limits (w; = 0.2, @, = 0.4, units
of 2mc/a), for three scatterers within an elliptical designable domain. The sum rules
converge to a low-frequency matrix constant (in this TE-polarization case, a scalar
multiple of the identity), and the constants for the two smaller scatterers obey the
domain monotonicity property. The combined elements of (c-e) impose strong
constraints on broadband scattering.

domain D containing all possible scatterer sub-domains, we can con-
vert the equalities of Egs. (4), (5) for specific volumes Vinto inequalities
over the designable domain D.

We can unify the above properties to create a framework for
fundamental limits. The T'(w) matrix can always be written in the form
of Eq. (3), while the real-symmetric matrix X(w) and the skew-
symmetric matrix Y(w) are strongly constrained. We renormalize X —
(m/2)X and Y — (m/2)Y to simplify the oscillator representation.
Together, for the T matrix of any designed scatterer within a desig-
nable region D, we have:

. o 1
T@= 1!11?)/0 w? —w? — iyw

X(w) 20, — X(w) =Y(wy) < X(w;),
1 e .
(07,2,./0 X(w;) dw; < HD'./o

The collective representation of Eq. (6) is the foundational result of our
paper: the T matrix of any linear scattering body must be decom-
posable into a set of lossless oscillators, with matrix-valued coefficients
satisfying definiteness conditions and constrained in total strength.
The only degrees of freedom in the scattering process are the matrices
X(w;) and Y(w;), both of which have strong constraints on the
bandwidth over which they can be nonzero. The T(w) matrix is linear
in these matrix degrees of freedom and the constraints are bounded
convex sets. Hence this representation encodes the constraints of
passivity and sum rules for electromagnetic scatterers in a mathema-
tical structure that is ideally suited for optimization and fundamental
limits.

For a first demonstration of the mathematical structure implied by
this representation, we consider broadband scattering from an ellip-
tical dielectric cylinder. To clarify the origin of the oscillators, we use a
material with x =@} /(0§ — w* — igw), with w, =20, wo =10, g=0.01w),

[X@p+ Zviwp)da,

(6)

| )
EX((;),-) dw; < Tgp.

4

which is nearly dispersionless with y=4 for @ between 0 and 1 (all
frequencies in unit of 2mc/a) and consistent with the necessary high-
frequency asymptotic response. The scattered electric field at various
points within the scatterer, computed by full-wave simulations (cf.
Supplementary Note 6), is shown in Fig. 1b, but is hard to interpret due
to its seemingly random undulations. Advances in quasinormal-mode
(QNM) techniques suggest that one could accurately reproduce these
fields with a modest number of QNMs®, but that modeling capability
does not imply an understanding of the extreme limits of what is
possible. How many resonances can be excited? With what amplitudes,
phases, and overlaps with power-carrying channels?

By contrast, consider the lineshapes of the Hermitian and anti-
Hermitian parts of the T matrix (computed on a discretization of
more than 37,000 spatial degrees of freedom), as depicted in Fig. 1c
for the same three spatial locations and their cross terms. The
lineshapes of the T-matrix elements closely mimic the Drude-
Lorentz-like behavior of electronic transitions, but they arise not
from real material oscillators, but from complex wave-scattering
behavior itself. The first three traces of Fig. 1c clearly show positive
imaginary parts of varying widths, and real parts that transition from
minima to maxima between the peaks of the imaginary parts, then
transitioning back to minima where the imaginary parts peak. Hence
the peaks tend to coincide (with the real-part peak slightly preced-
ing the imaginary-part peak), and the characteristic lineshapes
might be described as minima-to-maxima-to-transition for the real
parts and Lorentzian-like for the imaginary parts. The second set of
three traces in Fig. 1c do not have exactly this pattern, because they
have complex-valued residues that mix the real and imaginary parts.
But their underlying “oscillator-like" structure is still visible: one still
sees peaks in one part nearly coinciding with (but slightly preceding)
peaks in the counterpart, as well as Lorentzian-like lineshapes in one
part being paired with minima-to-maxima-to-transition lineshapes in
the other. By contrast, no such structure arises in the scattered fields
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Fig. 2 | Fundamental limits to NFRHT. a NFRHT between two closely separated
bodies. b Heat-transfer coefficients of planar bodies comprising high-performance
planar-body geometries (filled circles), in comparison with the best previous the-
oretical bounds*** (open squares and triangles). The previous bounds diverged for
some materials, while showing enormous gaps (>750X) for others, and their
trendline seems to decrease left-to-right, whereas planar-body performance

increases. In black is the theoretical bound offered by our T-matrix representation,
very close to the best possible planar bodies. ¢ Spectral HTC of the best bulk
(Drude, red) and 2D (heterostructure, blue) designs, with spectral peaks marked by
asterisks and the predicted theoretical peak from our oscillator-based bound (gray
dashed line). d Peak-HTC frequency of optimal materials (red, blue), nearly coin-
ciding with the predictions of the bound (gray) for a wide range of temperatures.

of Fig. 1b, because they simply do not have a representation
resembling Eq. (6).

Collectively, the lineshape widths of the T-matrix elements are
nonzero thanks to the underlying resonant physics, but every fre-
quency can and should (for our purposes) be interpreted as having its
own, lossless-oscillator amplitude, given by wIm T(w). The diagonal
components have imaginary parts that must be positive. The off-
diagonal components need not have positive imaginary parts, but they
are constrained by the positive-definiteness requirements of the entire
matrix, as verified in Fig. 1d, which shows the positivity of the eigen-
values of Im T'(w). The final key component for meaningful constraints
from such a representation is the sum rules, and their domain mono-
tonicity property. Figure le shows the integrated response for three
scattering bodies within the elliptical designable domain, showing
both their convergence to the appropriate sum-rule matrix constant as
the integral is taken to infinity (the numerical integral converges to
<1.7% error, as measured by the matrix Frobenius norm, using a 2000-
point Gauss-Legendre quadrature for frequencies from 0 to
40(2mc/a)), as well as the satisfaction of domain monotonicity between
the sum-rule matrices for the two sub-domains of the elliptical domain.
As a whole, these combined elements offer an ideal representation for
identifying fundamental limits to spectral control.

Ultimate limits to NFRHT
Next, we apply our formulation to the question of maximal NFRHT.
NFRHT, as depicted in Fig. 2a, poses prohibitive computational

challenges—spatially and temporally incoherent, broadband thermal
sources, exciting rapidly decaying near fields over large macroscopic
areas—which have limited previous design efforts primarily to high-
symmetry structures such as planar bodies*°~*2. Numerous approaches
have identified particular constraints with corresponding theoretical
bounds?>*'**, but as we show in Fig. 2b, there are orders-of-magnitude
differences between the best structures and the best bounds®**. We
label the bounds by their distinguishing attributes: in ref. 22 (“analy-
ticity bound”), complex-analyticity played a central role, while in ref. 34
(“channel bound”), a decomposition into power-carrying channels was
the starting point. Recently, it was discovered that a set of uncon-
ventional plasmonic materials offer significant (10X) improvements
over the previous best planar structures®, but otherwise, the field has
been at an impasse, without a meaningful approach to either improve
the best designs or tighten the bounds.

The T matrix formulation resolves this impasse. The heat transfer
coefficient (HTC) between two bodies is the net flux rate (per area and
per degree K) of electromagnetic energy passing between bodies at
temperatures T and T+ AT, as measured by the integral of power flux
(1/2)Re (ExH’ - h) through a separating plane with normal vector .
The incoherent sources in body i with temperature T; and suscept-
ibility xi(w), by the fluctuation-dissipation theorem*, are given by
J,(x,0) J (X)) =(4€ow/m)O(w, T;) Im Xi(@)]6;6(x — X') at frequency
w, where O(w,T;) = hw/ (e"*/%sT: —1) is the Planck spectrum, and kg is
the Boltzmann constant. There are a variety of mathematical trans-
formations that we make to this problem to make it more amenable to
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near the tip (gray, distance 0.1d). Near-tip scattered fields (gray) exhibit the
lightning-rod effect, increasing with tip sharpness. But frequency-integrated energy
transfer is proportional to the scattered field at the source (red), which increases
with wedge angle, consistent with domain monotonicity. Out of all possible sub-
domains, planar half-spaces must have the largest frequency-integrated response.

optimization, detailed in Methods, such as using reciprocity to move
the sources out of the hotter body and onto the dividing surface,
exploiting spatial symmetries of the bounding domains (two half-
spaces, allowing for any patterning within), as well as a near-field
generalization of the “optical theorem”**. The key novelty, however, is
our use of Eq. (6): once we have transformed the problem to an
appropriate function of the two-body T matrix, we insert the repre-
sentation theorem of T as a sum of positive-semidefinite matrix
coefficients with Drude-Lorentz lineshapes. NFRHT at moderate or
even high temperatures is dominated by low-frequency response, so
we only impose the low-frequency sum rule. For a designable domain D
of two-half spaces, T p=alp, where « is a scalar function of the
material susceptibility that is bounded above by 2. Once we insert the
T-matrix representation into the NFRHT expression, the resulting
optimization problem over the infinite set of matrix oscillator coeffi-
cients has an analytical upper bound. Straightforward algebraic
manipulations (cf. Methods) lead to an ultimate limit to near-field
radiative HTC given by

HTC< ﬁd—Tz, ()

where d is the minimum separation between the bodies, T the
temperature of the cooler body, and = O.ll(akf, /h)=3.8x
10°Wnm?/m? /K2, a numerical constant. This limit cannot be sur-
passed by any geometric patterning, nor can exotic optical properties
of any material alter its value.

Figure 2b compares our theoretical limit with the current state-of-
the-art, as well as the best known bounds. Whereas the gap between
the optimal planar structures and the best previous bounds was at least
750X (and diverging to « for some materials), the expression of Eq. (7)
is only 5X larger than the best design. This bound has no material
dependence, which resolves the problematic trend that if one orders
the materials by their planar performance, as in Fig. 2b, the previous
bounds tended to predict worse maximal performance from left to
right. The resolution of this discrepancy is our use of the low-
frequency sum rule, which encodes a constraint on the local density of
states seen by thermal emitters that depends only on their gap
separation, independent of material. The T-matrix approach predicts
an optimal NFRHT frequency of w,, :2.57"577, determined by the
overlap of the Planck function with the Drude-Lorentz lineshape. The
predictions are matched almost exactly by computationally optimized
planar Drude metals or 2D heterostructures, as shown in Fig. 2c, d. For
300 K temperature, the spectra shown in Fig. 2c peak at almost exactly

the optimal oscillator frequency, and the match persists across all
relevant temperatures, as shown in Fig. 2d.

Although it seemed plausible (even likely) that nano-structuring
may lead to enhanced NFRHT through field-concentration (lightning-
rod) effects, our sum rule explains why this is not the case: sharp tips
can enhance the fields very close to a sharp tip, but not at the source
location itself. The local density of states is proportional to the latter,
and hence is not enhanced by lightning-rod effects. To illustrate why
sharp-tip-based (or related) structures are inferior, we design a
numerical experiment. In NFRHT, after using reciprocity, the incident
field arises from point sources along a separating plane between the
bodies. For a single given dipole, the relevant low-frequency sum rule
constant is e/ Toe,,.=el p, ie., the overlap between the (static)
incident field and the (static) induced polarization. This is equivalent to
the scattered field at the point source.

Figure 3a, b compares schematic depictions of sharp-tip versus
planar-area structures, while Fig. 3¢ shows finite-element calculations
for two-dimensional analogs, with dipole sources of both possible
polarizations between conducting wedges of arbitrary inner angles S,
with the sources a distance d from either tip. The gray lines show the
scattered fields near the tip (at distances 0.1d), which for the transverse
polarization increase at smaller angles, i.e., sharper tips. This is the
typical lightning-rod effect. Yet these amplified fields play no role in
determining the total level of broadband energy transfer; the static
constant controlling the sum rule is proportional to the scattered field
back at the source, shown in red. This quantity increases with the
wedge inner angle, a result that must be true by our domain mono-
tonicity theorem. Hence planar bodies (8=m) must have the largest
possible frequency-integrated response. The only remaining question
is whether the frequency response can be tailored for maximum
overlap with the Planck spectrum, but that question was answered
above, affirmatively, by optimal material dispersion relations.

The closeness of the arbitrary-structure bound of Eq. (7) to the
best planar structures arises despite quite different mathematical
routes to these results. The translational symmetry of planar bodies
implies conserved wavevectors and thus a set of evanescent plane-
wave channels that are independent, with Landauer-like
transmissivities*2. Such an approach cannot describe patterned struc-
tures. Instead, Eq. (7) culminates after using (generalized) reciprocity
to move the sources from the hot body to the dividing surface, the sum
rule to encapsulate the maximum densities of states seen by those
sources, and the T-matrix representation to constrain the possible
scattering lineshapes. The striking similarity of the two results suggests
that even when confronted by spatial and temporal incoherence,
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rapidly decaying fields, and large areas, the oscillator representation
compactly captures the key physics of maximal response in the
near field.

Discussion

In this article, we have introduced a framework for broadband elec-
tromagnetic scattering. The example of Fig. 1 showcases the joint
consequences of passivity and sum rules on the structure of the elec-
tromagnetic T(w) matrix. We propose a recipe for identifying funda-
mental limits: rewrite any objective of interest in terms of the T(w)
matrix, and then use the representation of Eq. (6) as the constraints.
Our application of this framework to NFRHT offers clear guidance for
the fundamental limits of radiative heat transfer and the physical
mechanisms underlying them. The generality of our T" matrix repre-
sentation offers tantalizing prospects for wide-ranging applications
across nanophotonics. Metasurfaces**¢, for example, offer a compact
form factor for optics. A central question is the extent to which
metasurfaces can control incoming waves**’, across varying fre-
quency and angular bandwidths, for applications from lenses to virtual
and augmented reality. Similarly, techniques for imaging through
opaque media have flourished with modern spatial light modulators®,
with a key open question being ultimate limits to spectral control. In
photovoltaics and photodetection, the quest for ever-thinner devices
must ultimately contend with fundamental limits, and similarly across
almost every application of nanophotonics. There has long been a
need to quantify ultimate limits to spectral control; our approach
offers a theory to do so.

Our approach also dovetails seamlessly with a recent flurry of
activity in understanding the limits controlling spatial degrees of
freedom in nanophotonic systems® >, Transforming the typical Max-
well differential equations into a set of local conservation laws in space,
for real and reactive power flows, leads to a mathematical form of the
design problem that is amenable to systematic approaches to com-
putational bounds. For a single frequency (or a small number of
them®), such conservation laws have shown powerful capabilities for
identifying fundamental limits to spatial control. In these approaches,
the degrees of freedom of the system are typically encoded not in the
electric and magnetic fields, but rather in the electric and magnetic
polarization currents that they induce. Those polarization fields are
exactly those that are determined by the T" matrix, which means that
our spectral expansion of the T matrix should be seamlessly compa-
tible with the spatial conservation laws proposed in ref. 52,53. Toge-
ther, the two approaches may enable a complete understanding of the
spatio-spectral limits of electromagnetic systems.

One might wonder why we have utilized the T(w) matrix, when
the vast majority of photonics theory uses the scattering matrix S(w)?
There are two reasons. First, in many scattering systems, incoming and
outgoing waves are spatially distributed (e.g., spherical waves),
requiring exquisite care with S-matrix causality conditions, leading to
(for example) phase shifts in the KK relations®™. It becomes unclear
which degrees of freedom (if any) are necessary, sufficient, and have
convex passivity constraints. The second issue is that there is not, as far
as we know, a useful S-matrix sum rule of a positive semidefinite
quantity. Without such a sum rule, all response is unbounded. As dis-
cussed above, scatterer-volume T matrices appear to be the unique
scattering/impedance/admittance matrix where KK relations, passiv-
ity, and sum rules can all be combined into a bounded, convex set of
constraints.

More broadly, the insight at the foundation of our framework,
about the mathematical properties of scattering T matrices, can be
directly applied to any classical wave equation. These techniques
should be readily extensible to linear scattering problems in acoustics,
elasticity, fluid dynamics, and beyond. The mathematical structure of
the wave equation is similar in each case, and the resulting T matrices
should therefore have similar representations. An interesting twist may

arise in acoustic scattering theory, where materials with higher-than-
vacuum speeds of sound lead to “non-causal” scattering processes*®
that have prevented the development of classical sum rules, and would
appear to prohibit a corresponding T matrix representation. Yet the T
matrix itself may offer a new route to complex-analytic response
functions in exactly such scenarios. The reason higher sound speeds
lead to “non-causal” response is that the scattered field appears at a
location within the scatterer earlier than the incident wave itself.
Hence, locally, the process appears non-causal. Yet the nonlocal nature
of the T matrix may be precisely what is needed to resolve this para-
dox. A T matrix isolates the response at any point x to the contribu-
tions from the wave incident at each point X’ in the scatterer; each of
which, individually, must be causal. Hence, not only should the T
matrix be extensible to such scenarios; it may further resolve impe-
diments that had previously stymied even simple sum rules in these
fields. (Relatedly, wave scattering with any non-trivial/non-vacuum
background has historically stymied sum rules, and this is another
avenue of exploration with the T matrix.)

Finally, we speculate that the approach described here may even
be extensible to quantum scattering. In the frequency domain, the key
difference between quantum and classical scattering is the analytic
structure of the governing equations. In classical wave equations,
second derivatives in space are proportional to second derivatives in
time, which lead to poles in the lower half of the complex-frequency
plane and analyticity in the upper half. In quantum scattering, second
derivatives in space are proportional to first derivatives in time, which
leads to bounds states for negative real energies and branch cuts on
the positive real axis. Our standard semicircular contours likely need to
be replaced by “keyhole” contours', with the open question of whe-
ther there are meaningful sum rules that can be derived (perhaps
dependent on bound-state properties, as in Levinson’s theorem*”*° for
spherically symmetry potentials). If such sum rules could be derived, it
is likely that an infinite-oscillator description could be used to identify
fundamental limits for quantum scattering as well.

Methods

Domain monotonicity

In this section, we derive “domain montonicity” theorems for the
matrices on the right-hand sides of the sum rules of Eqgs. (4), (5).
Domain monotonicity is trivial for the high-frequency sum rule, as the
right-hand side is directly proportional to the identity matrix on V.
Consider a domain D that contains V. How can we compare the two
identity matrices? We can embed the identity matrix on V in a larger
matrix on D, with zero elements for any spatial degrees of freedom in D
and not in V. Hence, by direct comparison, we will have

I, <1lp, 8

proving that the high-frequency sum rule obeys domain monotonicity,
implying that it can be converted to an inequality over any designable
domain of interest.

Domain monotonicity for the low-frequency (static) sum rule is
less obvious. Here, we generalize the arguments of ref.”> to prove
domain monotonicity. We need to prove that quantities of the form
x"Tq,yX increase, for all x=0, when the domain V increases (i.e.,
contains all points of its original domain, and a nonzero volume of
points outside of its original domain), for a positive-semidefinite static
susceptibility. (Gyrotropic materials, with a nonreciprocal pole at zero,
are materials that do not have such susceptibilities®.) We can interpret
the multiplication of T with x as the polarization field induced by an
“incident field” x, and then multiplication on the left by x takes the
overlap of that incident field with the polarization that it induces.
Hence we will label our arbitrary vectors as e, instead of x, for clarity
in the mathematical relations to follow, though we impose no con-
straints on the “incident field” and indeed allow it to be an arbitrary
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vector. In computing the response to such a vector, however, we can
use a few important physical consequences of electromagnetism. In
electrostatics, the fields (and T matrix) can be chosen to be real-
valued, so that we can consider the objective as x” Tx, without any
conjugation.

We are interested in the quantity F=e] Te;,.=el p, and how it
changes when the domain changes. We will consider only continuous,
increasing changes in susceptibility: Ax(x)>0 everywhere. Hence a
variation in F can be written

6F = e 6p. )

The polarization field is the solution of the volume
(Lippmann-Schwinger) integral equation:

(G0+6)p: — €ines (10)

where G, is the background (vacuum) Green’s function operator,
&=-x", and ey, is the incident field. The variation in p can be found by
taking the variation of Eq. (10), which is: (G +§)6p +(8€)p =0. Sol-
ving for 6p:

6p=— (Go+€) (6P (11)
Inserting this variation into the objective gives
SF = —efc(Co+) (6P @
=p’(6§)p.
Finally, from the equation £=- ), we have 6= x(6x)x, so that
6F=e"(6y)e, (13)

which is nonnegative for any positive semidefinite §x. Hence we have
shown that

e 6Te .20

inc nc =

a4)

for any increases in the domain size or shape; since this is true for any
vector €, then variations in the electrostatic 1" matrix must them-
selves be monotonic. This means that given a scatterer Q; of any size
and shape whose static T matrix is TV(w = 0), any other scatterer Q,
whose volume encloses that of Q; must have a T®(w=0) no smaller
than TY(w=0), i.e:

TOw=0)2TYw=0), (15)

when the scatterer domain Q, entirely encloses the scatter domain Q.

Derivation of the NFRHT bound

To investigate radiative heat transfer from object 1 (bottom) to object
2 (top), we first break down the problem to power integrations at every
frequency. The power flowing in the positive z direction across the
middle separating plane (perpendicular to z) between the two objects
is:

S(w)= %Re / ' ds[(E{((r))*Hg(r) - (Eg(r))*H{((r)] (16)

where the superscripts denote the current sources in the bottom
object, whose amplitudes are dictated by the fluctuation-dissipation
theorem:

(Ji(@,r));(@,r,))=Z(w, T)6(® — &)5(r, — )5 17)

ijr

where Z(w,T)= 4s"“’lm)(l(a))O(a),T), the susceptibility of the lower

m

body is x,(w)= 51(;")—1, and O(w,T) is the Planck distribution,

£
O(w,T)=hw/(e*" —1). The subscripts in r, indicate the position vector

lies in the volume of the emitter 1. Then the field correlations in Eq. (16)
can be expressed in terms of the Green’s functions GEJ(r,r;) and
G (r,r,) applied to the thermal source correlations in Eq. (17).

Our bound will not distinguish between the x and y directions
(which are symmetric in the bounding domain, even though of course
they are not for many allowable patterns), in which case the upper
bounds on either of the two terms in power integration in Eq. (16)
are identical: Max[Re [ dS(E,(r))*H!,(r)|=Max[—Re [ dS(E},(r))*H(r)].
Hence the maximum flux S(w, T) equals the maximum of the function

FRHT(,T) = Re / ds(Eg(r))*Hg(r). (18)

We use reciprocity to transfer the flux evaluation of Eq. (18) on
the surface S from sources in V to a field evaluation in V from
sources on S. The background Green’s functions are reciprocal, i.e.,
Gil(r.r,)=GJ(r,r), and G/ (r.r,) = — G}'(r,,r), so we can equate the
fields at r produced by sources at r, with fields at r, produced by
sources at r. In light of the correlations for currents sources inside the
volume, Eq. (17), we can define the correlations for reciprocal current
sources on the middle flux plane as

U@, M (@', 1)) = 06w — &)5(r —r). 19)

The amplitude w is chosen so that E’i;c(r,,)> *E::g(r,,) is independent of
frequency, which will be important later. Simple insertion of the
Green'’s functions into Eq. (18) and the usage of reciprocity and Eq. (19)
leads to a volume-field expression for FHT:

RHT _Z(w,T) A M,
FT (1= 0 Re / VSdV(E’ (r,,)) E"(r,) (20)

where Vs is exclusively the source volume. Equation (20) represents
the total flux from an infinite plane of sources between the infinite
bodies. An upper bound on this flux is given by the upper bound on the
flux generated by a single set of point sources at a given position on the
separating plane, multiplied by the (infinite) area of the plane. This
allows us to easily switch to the quantity of interest in large-area
NFRHT: the per-area radiative heat transfer, which is bounded above
by the maximum flux from a single set of sources at a single position on
the separating plane. This also resolves a second possible difficulty:
how to represent the T matrix for infinite, extended structures? For
point sources in the near field, there is no issue: the fields decay
sufficiently quickly that the response is guaranteed to be well-behaved.
(Intuitively, one can imagine substituting large but finite-sized
structures at this stage, and later taking the limit as size goes to
infinity. The rapid field decay ensures that the subsequent integrals
converge, even in the infinite-size limit.)

We switch to vector notation now, using the notation of lowercase
letters without the subscript v to represent field vectors on the domain
of both objects. For example, the volume integral over the lower body
in Eq. (20) becomes (e,/x)*@e,,’”y, where O has ones on its diagonal in
the lower (source) volume and zeros everywhere else. We can write this
integral out in terms of the T matrix:

T 1 N t ~ ~ M
Re| (€)' De"] = 86m2Re<(e{nc> T'OT eing>
1 -
=——=Tr(T'OT E).
g%m2 ( )
Notice both T matrix and e;,. vectors are defined on the domain of
both the top and bottom bodies. In Eq. (21) we defined the function

@n
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E= Re< i (e(* >~> which is a rank-2 matrix and can be decomposed

inc

into one positive eigenvalue term and one negative eigenvalue term:

E=0q1q) + 1,0, 22)
with eigenvector g, and eigenvalues 4, , given by
e’x e. M,
o= —"—+ N 23)
fle{ncl «/—lemy
< el 16
A=+ €cll€inml _ _, 1345x10 o8

2 %(dXIO(’)Z.

One can now see that our choice of source amplitudes in Eq. (19) leads
to frequency-independent eigenvalues of .

To bound the expression of Eq. (21), we will relax it in a few ways.
(Interestingly, intensive numerical optimizations using manifold-
optimization techniques®*®® directly on Eq. (21) lead to the same
upper limits that we derive below, suggesting that these “relaxations”
are minimal and do not loosen the analysis given the constraints that
we use, such as sum rules.) First, the £ matrix defined by the two
renormalized incident fields has one positive and one negative eigen-
value, per Eq. (22). Physically, we can interpret the negative sign of the
second eigenvalue via the power expression of Eq. (21) containing £, as
the difference in powers absorbed for the two renormalized incident
fields. This is of course bounded above by the absorption of only the
first incident field, dropping the subtracted term, leaving only the
contribution of the single positive eigenvalue of E. Thus we have:

Tr [T*@TE] <Tr {T*@T Alqlqﬂ . (25)
Next, we note that O indicates absorption only in the lower body; of
course this quantity is bounded above by the total absorption in both
bodies. This is represented mathematically as the constraint that O <T,
which implies:
A(aT'OTq) <A (¢]T'Tq ). (26)
Finally, the absorption in both bodies is less than the net extinction of
the two bodies (their far-field scattered powers are positive, and
essentially zero in the near-field case, so that this relaxation is
negligible). We can use a generalized “optical theorem” constraint to
bound this quadratic absorption-like quantity with a linear extinction-
like quantity. The idea is that absorption must be smaller than
extinction: Paps<Pex.. Absorption is given in terms of T-matrix by
Paps = —Im(eTp) = i";‘—"‘ el T'Te,,. Similarly extinction is given by
Poi = lm(emcp) = %emc(lm T)ej,.. Thus the “optical theorem” condi-
tion lmphes that for any T matrix,

= 47/11 0w, Tgl(ImT)q,. (30)
Surprisingly, the various transformations to this point have removed
all explicit dependencies on material susceptibility x;.(w), with the
only implicit dependence embedded in ImT'. We will now focus on the
upper bound for HTC, and the upper bound for RHT can be found by
taking similar steps. To switch from the RHT to HTC bound compu-
tation, we just need to take the temperature derivative of the last
expression to get

4/11 a@(w T) +

0, Ty< 2L (31

q;(ImT)q,.

In our oscillator representation, we know that wIm T(w) is exactly the
real-symmetric positive-semidefinite matrix X(w), which must satisfy
the low-frequency sum rule [5° X(w;)/w? <alp. (The nonreciprocal
part of wlmT(w) cannot contribute, as the NFRHT objective is
symmetric around w=0, so that it can be written as the linear
combination of positive-frequency contributions and their negative-
frequency counterparts. The positive- and negative-frequency con-
tributions cancel for the nonreciprocal part due to its anti-symmetry in
frequency.) We renormalize X to simplify the sum rule:
X(w) — a(r/2)w?X(w;), so that [5° X(w,) <. In terms of X(w,), the
total frequency-integral HTC is

(32

HTC < 2eqal, Tr {qlq{ / ” X(w)< %0, T)> dw}
JO

The optimization of Eq. (32), subject to the passivity constraint
(X(w)=0) and the sum-rule constraint (f5° X(w)dw<T)) is actually
simple, thanks to the structure of the objective and representation. We
form a basis Q whose first column is g;, with all other columns
orthogonal to ;. If we write at every frequency X(w)=QX'(w)Q', then
Tr {qquX(w) =q;OX'()Q'q = (X'(w)),,. Hence only the (1,1) ele-
ment of X'(w) contributes to the objective (due to the rank-one nature
of the excitation). The positive semidefinite property as well as the sum
rule for X(w) are equivalent for X'(w) (as the transformation was
unitary). Hence we can rewrite the HTC bound as:

60(w,T)> do, (33)

HTC<2¢yal, /0 (X'(w)y <w a7

subject to the constraints Xj;(w)=0 and [;° Xj;(w) dw<1. The max-
imization of an inner product subject to a “probability simplex”
constraint®* has a simple solution: concentrate all of the response into
the single degree of freedom where the objective vector is maximized.
In particular, in this case, the optimal Xy is a delta function with unit
amplitude at the frequency where wwg—“;'” is maximized. A simple
calculation shows that this occurs for

_2.57kgT _ XopksT
Imy . Wopt = h TR (34)
— T <ImT. 27)
Eolxl
which is exactly the near-field Wien frequency that we found from HTC
Hence we can write optimization for planar, unpatterned geometries®. In terms of the
dimensionless variable xop =2.57, the HTC bound is:
/11( T qu> <A O‘X i ql(lm Tqy, 28) 20(w,..,T)
HTC <2¢epa; | @y — 2~ (35)
P oT
without introducing much relaxation. We can now rewrite Eq. (20) as
KAT X385
ZwT) 1 . &P =2eoal B T (36)
RHT 0 0N ——
F ((A),T) < ® 5(2) ‘X|2A1 lmX ql(lm T)ql (29) h (exopt — 1)
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Inserting the numerical prefactors, we arrive at the final bound:
HTCSO.llak—él :/31, (37)
ha® g
where B=3.8x10°Wnm*’m*K> For T=300K and d=10nm,
HTC < 1.1 x10° W/m?%K, which is 5X the optimal planar performance.
Hence this theoretical framework offers a close prediction to the best
known designs, it predicts the optimal resonance frequency where the
oscillator-strength should be concentrated, and it explains why
previous material-dependent predictions were incorrect.

Data availability
The datasets generated in this study are available at https://github.
com/PhotonDesign/ScatteringOscillatorsResults.

Code availability
The simulation code used in this study is available at https://github.
com/PhotonDesign/ScatteringOscillatorsResults.
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Supplementary Note 1. INTEGRAL-OPERATOR DEFINITION OF THE T MATRIX

In the main text, we used linearity as a sufficient condition to argue that the polarization fields P(x) induced by
an incident field Ej,.(x) must be related through a linear operator that one can call “T:”

P(x) :/ T(x,x ) Eine (x') dx/, (1)
%
or, in our vector notation,
P= Teinc~ (2)

In this section, we discuss the (known [1]) construction of the T matrix from known integral-equation operators.
For any scattering problem, the volume (Lippmann—Schwinger) integral equation is [2]

’ / /7i %) = B (x
| BolexIP) dx — —PUx) = B g

where the first term is the scattered field and the second term is the negative of the total field. Or, in vector notation,
[Go—x7"'] P = —€inc- (4)

The T matrix, then, is the negative inverse of the matrix in square brackets:
_17-1
T = — [Go — X 1] . (5)

Hence the T matrix can be computed via standard methods [2].

Supplementary Note 2. COMPLEX-FREQUENCY SYMMETRIES OF THE T MATRIX

For an electric field or a polarization field, the usual symmetry relation is E(—w*) = E*(w) and P(—w*) = P*(w),
which are consequences of the real-valued nature of the time-domain fields (proven by Fourier transform). By exactly
the same reasoning for the T matrix, we have:

T(-w") = T*(w), (6)

where the matrix asterisk denotes entrywise conjugation. The entrywise nature of Eq. (6) inhibits direct symmetry
relations for the Hermitian and anti-Hermitian parts of T. The key, then, is to break the T matrix into its complex-
symmetric and skew-symmetric parts, which we can refer to as its “reciprocal” and “nonreciprocal” (or, really,
“anti-reciprocal”) parts:

T=R+N, (7)

where R = (T + T7)/2, and N = (T — T7)/2. Then one immediately has the same symmetry relations for R and N,
ie, R(—w*) = R*(w) and N(—w*) = —N*(w), but they can be directly converted to matrix symmetry relations:

R(-w") = R (w),
N(-w*) = —NT(w). (8)

From these, one can immediately read off the symmetry relations for the Hermitian and anti-Hermitian parts of R
and N: ReR(—w*) = ReR(w), InR(—w*) = —ImR(w), Re N(—w*) = — ReN(w), and Im N(—w*) = Im N(w).

Hence neither R(w) nor N(w) have additional degrees of freedom at negative (real) frequencies; their positive-
frequency components represent all of their independent degrees of freedom. We can use these symmetries to prove
the positive-definiteness conditions on the reciprocal and nonreciprocal parts of the response. In the main text, we
defined at real frequencies: wImT(w) = X(w) 4+ Y(w), where X and Y are the reciprocal and nonreciprocal parts
of wIm T(w), which means that X(w) = wImR(w) and Y(w) = wImN(w). At nonnegative frequencies, the positive
semidefinite property of wIm T(w) directly implies that

X(w) + Y(w) > 0. 9)



At negative frequencies (—w, for w positive), we similarly have:
X(—w) + Y(—w) > 0. (10)

But we can use the symmetry relations above to simplify this expression to positive frequencies. From the relations
for R(w) and N(w), it follows that for real-valued frequencies, X(—w) = X(w) and Y(—w) = —Y(w). Hence the
negative-frequency positivity condition can be converted to:

X(w) = Y(w) > 0. (11)

Hence at every nonnegative frequency, X+ Y and X —Y must be positive semidefinite; these two conditions also imply
that X itself must be positive semidefinite.

Supplementary Note 3. OSCILLATOR REPRESENTATION VIA HERGLOTZ FUNCTIONS

In this section we include (a) a survey of representations of passive linear systems, and (b) an alternative derivation
of Eq. (3) of the main text, using a Herglotz—Nevanlinna representation.

A. Background: passive linear systems

There is a long history of identifying constraints associated with passive linear systems [3-10], with applications in
fields ranging from circuit theory and control [11] to electrical interconnects [12] to elastic materials [13] to quantum
field theory [14]. In this section, we review some of the classic results of what is known in passive linear systems. We
will specialize to N-port systems, in which there is a finite number N of orthogonal input/output channels that are
normalized to each carry unit power into or out of the system. Particularly useful pedagogical introductions include
Refs. [6, 8, 10, 12].

We can start with the “scattering” picture of a linear system. Linearity implies that input amplitudes, collated
into an N x 1 vector a, are scattered into an N x 1 vector of output amplitudes b that can be found via an N x N
scattering matrix S:

b = Sa. (12)

Passivity is the condition that that the total outflow of power up to any time ¢ be smaller than the total inflow of
power up to the same time:

/ [aT(T)a(T) — bT(T)b(T)] dr > 0. (13)

—00

This condition is sometimes referred to as strong passivity, and its weak passivity counterpart is defined only for
the limit in which ¢ — oco. The results below do not necessarily hold in weakly passive systems without separately
invoking a causal scattering operator [8]. By contrast, strong passivity actually implies causality. Causality can be
defined as the requirement that a zero input signal, a(r) = 0, up to some time ¢, implies zero output, b(7) = 0 up to
the same time; this condition is an immediate consequence of Eq. (13).

Whereas the conventional engineering literature where much of passivity theory originated uses the Laplace domain,
we will use the frequency domain to conform with typical modern scattering theory. The key consequence is that the
right-half plane (RHP) is rotated to the upper-half plane (UHP), and some of the key results will refer to positive
imaginary parts (suitably defined) in the UHP, instead of positive real parts in the RHP. We will overload the same
variable names for time- and frequency-domain versions of a variable, with the argument denoting the context. For
example, the time domain version of Eq. (12) is b(t) = [S(¢ — t')a(t') dt’, and the frequency-domain version is
b(w) = S(w)a(w).

The first key result of passivity declares necessary and sufficient conditions of the scattering matrix S of a passive
linear system. In particular, S(w) is the frequency-domain scattering matrix of a passive linear system if and only if:

1. S(w) is analytic for Imw > 0,
2. T— ST(w)S(w) is positive semidefinite for Imw > 0, and

3. $*(w) = S(—w*),
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where I is the N x N identity matrix. These conditions define bounded-real functions [4, 12]. A simple physical
interpretation of the conditions is that the first is a consequence of causality, the second a consequence of passivity
(for inputs with both oscillating and growth/decay terms), and the third is a consequence of real-valued time-domain
signals, though such an interpretation only implies that they are necessary, and not their sufficiency. The proofs
in the literature tend to be rigorous but also quite formal. One issue with these conditions is that they require
certain properties to be satisfied over the entire half-space of the UHP, which can be computationally expensive for
applications such as real-time passivity verification [9]. There is an alternative characterization entirely using real-line
values [6, 12]. Tt is not so important for our work, so we will not highlight it, but the characterization essentially boils
down to three conditions: S(w) satisfies Kramers—Kronig relations, I — ST(w)S(w) is positive semidefinite everywhere
on the real line, and S(w) = S*(—w). Alternatively, and closer to our interests, is a representation theorem for
scattering matrices. The scattering matrix of a passive linear system everywhere in the UHP can be written:

. y 00 S(w'

More rigorous derivations of Eq. (14) start with the function S(w) defined only in the UHP, then proves Eq. (14)
where S(w’) are boundary values of the function, suitably defined [8]. An alternative, slightly less rigorous approach,
is to use the analyticity of S(w) and take a contour integral of S(w)/ [(w — wo)? +~?].

The conditions above represent the key conclusions of passivity in a scattering formalism (mapping inputs to
outputs). They can be quite useful for validation [9], i.e., verifying that a scattering matrix represents a passive
system, but they are less useful from a theoretical bound perspective. One issue is that it appears difficult to identify
a sum rule for a positive-definite quantity from which S(w) can be built. An even more significant issue is a subtle
one: the simple definition of Eq. (12) can in fact be difficult to realize: one needs a basis of independent “channels”
on which to define a(t) and b(¢), but typical basis functions (e.g. vector spherical waves) are spatially distributed,
which leads to more complex passivity and causality conditions. In particular, any definition of causality requires the
introduction of phase shifts related to the properties of the physical scatterer [15]. This appears to render impossible
any hope of a scattering-matrix-based framework for spectral bounds.

Of more utility for our purposes is the immittance formalism, in which the port variables are currents i and voltages
v. “Immittance” refers to the class of matrices representing either impedances or admittances, which have identical
necessary and sufficient passivity conditions in many cases. Abstractly, the immittance variables can be derived from
the scattering variables, as v =2 (a — b) and i = 2 (a + b), or vice versa. The strong passivity condition of Eq. (13)
is then, in the immittance variables,

/ vI(r)i(r)dr > 0. (15)

— 00

An immittance matrix X (representing an impedance Z or an admittance Y) represents an N-port linear system if
and only if:

1. X(w) is analytic for Imw > 0,
2. ReX(w) = 1 [X(w) + XT(w)] is positive semidefinite for Imw > 0, and
3. X*(w) = X(—w*).

These conditions define positive-real matrices. (Sometimes, though not always [4], they are only defined as such in the
Laplace domain.) They are identical to the conditions for the scattering matrix, except that the passivity condition
is now in the Hermitian part of the immittance matrix, whereas the relevant quantities for scattering matrices is
I — ST(w)S(w). The analogous real-line-only conditions for the impedance matrix are less insightful than those for
scattering matrices [6, 12], so we do not include them here. Alternatively, there is a quite useful representation
theorem for immitance matrices, although for compatibility with our T-matrix discussions, we will first make a small
pivot. A T matrix relates a field to a dipole density, rather than a current, and hence a T matrix is analogous to
an immittance matrix multiplied by frequency and the imaginary unit ¢. Hence, a T(w) matrix represents a passive
N-port linear system if and only if:

1. wT(w) is analytic for Imw > 0,
2. Im [wT(w)] is positive semidefinite for Imw > 0, and

3. wT*(w) = — [wT(w)]

w=—w*"?



where Im [wT(w)] is the anti-Hermitian part of wT(w). The first two of these conditions defines a matrix-valued
Herglotz—Nevanlinna function. There is a well-known representation theorem for such functions [16-18]:

00{1 A

— 00

(16)

where w is in the UHP, C is Hermitian, D) is Hermitian positive semidefinite, and d©2()) is a matrix-valued measure
satisfying certain integrability conditions. (An analogous representation in the Laplace domain was recognized by
Youla [4]; Beltrami connected this work to earlier results by Herglotz and Cauer [5, 19].) The values of C and D are
specified by T: C = Re [iT(¢)] and D = lim,_, o [T(y)].

B. Alternative derivation of the integral representation of the main text

We saw in the previous section the general Herglotz representation
T(w) =C+Dw + /OO oA dQ(N) (17)
wl(w) = w —
A—w 1+2A2 ’

— 00

where C = Re [iT(i)] and D = lim,_, [T(iy)]. The T matrix decays as 1/w?, which enables significant simplification
of the representation. From Remark 2.8.3 and Theorem 2.4.2 of Ref. [18], the growth condition

/ xIT(iw)x dw < oo, (18)
0

implies a simplified representation. This growth condition is satisfied by the T(w) matrix thanks to its quadratic
decay at high frequencies. Then, the representation is [18]

wT(w) = /00 d() (19)

o A—w

We can use the symmetry condition on wT(w) (the third condition above Eq. (16)) to identify conditions on the
matrix-valued measure df). Note that
o0 dO*(A
w*T(w*) :/ A (20)

* )
o AW

and

N e = @1

For Egs. (20,21) to be equal at all frequencies, then d©2 must satisfy
dQ(=A) = =dQ*(N). (22)
We can use this condition to simplify the integral relation to positive frequencies only:

oo 0
) = [ 420 +/ aQ(\)

0 A—w oo AW
AN > dQ(=N)
o A—w +/0 Atw
1A dr(N)
_/0 {)\w_ )\er]' (23)

As a matrix-valued measure, df2 is Hermitian. We can define its reciprocal and nonreciprocal parts as dX and dY,
respectively, both of which will also be Hermitian. Then we have dQ*(\) = dX*()\) +dY*(\) = dXT(\) — dYT(\) =
dX(A\) —dY(X), and the integral relation becomes

[T AX(N) +dY(A)  dX(N) —dY(A)
WT(w)ifo { A—w - At w }

_ /O - {&dx()\) + )\22_>\w2dY(/\)] . (24)



We can divide both sides by w to isolate the T(w) matrix on the left-hand side, and subsume the factors of 2 on the
right-hand side into the measures. Then we have

T(w) = /O h [)\inQdX(A)—kw(/\Q/\_wz)dY(A) . (25)

Remember that this expression is for w in the upper-half plane. We can take the limit as w approaches the real line,

but we must do so carefully: in any expression of the form 1/(\ — w), we cannot discard the imaginary part of the

frequency, even as it goes to zero, as the imaginary part of the entire expression approaches that of a delta function

(in a distributional sense). By contrast, in terms of the form 1/(A+w) (for A > 0) or 1/w, the imaginary part can be

dropped in the limit that it goes to zero. If we define v = 2Imw and w = Rew (overloading notation), then we can
write:

e 1
T(w) = lim _—
@) =0 Jy A —w? —iyw

dX(A\) + ng()\) , (26)
which is equivalent to Eq. (3) of the main text, with the replacements A — w;, dX(\) = X(w;)dw;, and dY(X) —
Y(wl)dwl

Supplementary Note 4. PHYSICAL OSCILLATORS VS. MATHEMATICAL OSCILLATORS

In the main text we contrasted our T-matrix “mathematical-oscillator” representation with the well-known
“physical-oscillator” decompositions in use today. Here we detail the similarities and differences in these approaches.
At the highest level, physical-oscillator approaches are meant to be efficient for simulation and modeling: for a given
structure, can one identify a small number of parameters (e.g. normal- or quasinormal-mode coefficients, etc.) that
accurately model the complete response of the system? Typically these models are highly nonlinear in the unknown
parameters, but there are standard computational methods for finding them. Yet for problems of design, these
representations are difficult or impossible to work with: there is not a single given structure, anymore, but instead
a large class of structures. It is not known a priori how many resonances or modes may contribute; to be safe,
very large numbers must be used. So one is left with large, highly nonlinear models to optimize over, without any
beneficial mathematical structure. The “mathematical-oscillator” theory developed in the main text is well-suited to
this scenario. The use of lossless (and hence narrow-linewidth) oscillators naturally also leads to a large numbers of
parameters (matrix-valued oscillator coefficients), but these parameters have ideal properties from an optimization
perspective: they are positive-definite, constrained in sum, and linear in the only degrees of freedom. In fact, this
decomposition is quite ill-suited for modeling: one needs to invert a large, dense matrix at every frequency to get
the corresponding coefficients, which is computationally prohibitive except for small structures. But for design, one
never needs to do any matrix inversion, and the mathematical structure of the decomposition is far superior for
optimization. Below, we provide the mathematical expressions supporting these qualitative assertions.

In electromagnetic scattering simulations, there are two primary classes of “physical-oscillator” approaches: coupled-
mode theory (CMT) [20-24], and quasinormal-mode (QNM) theories [25-31]. It can be shown that the former
can be derived from the latter in the limit of isolated, high-Q} resonances with negligible non-resonant scattering
contributions [32]. We will describe both of these constructions. We start with coupled-mode theory. In coupled-
mode theory, there is a basis of resonant modes described by a matrix €2, whose diagonal terms are complex-valued
resonance frequencies of the modes, and whose off-diagonal terms describe coupling rates between each pair of modes.
Each resonance has “‘overlap coeffients” with each outgoing-wave channel, the matrix containing these elements is
often referred to as K (or D, which is identical to K in reciprocal systems). Finally, there is typically a non-trivial
background scattering matrix Sy, that contains non-resonant contributions to the scattering process. In full, in any
general (reciprocal) coupled-mode theory, the scattering matrix is given by the expression [20, 32]

S =Sy —iK (Q—w) KT, (27)
subject to reciprocity and unitarity conditions given by

K'K =2ImQ, (28)
SpeK* = —K. (29)

One can immediately see that a CMT model constructed from these three equations will be impossible to optimize
over. The degrees of freedom are the matrices (2, Sy, and K, none of which are Hermitian (let alone positive definite).



Moreover, one cannot even presuppose any finite, constrained size of the matrices, as there is no sum rule constraining
any norm of the entries.

One route towards using CMT models for understanding limits is to remove much of the complexity from Eqs. (27)-
(29). If one assumes background scattering cannot occur (although note that even in Mie resonators it plays a quite
important role [32]), then Spg = I and K* = —K, such that one can rewrite the scattering matrix relation as

S=T+iK(Q—w) 'K, (30)

a form of the S-matrix that also arises in nuclear scattering theory [33, 34]. Next, one can assume that none of the
modes are coupled, such that Q is a diagonal matrix. (This condition will typically conflict with the requirement that
KTK = 2ImQ, but we ignore that for simplicity.) Finally, special quantities such as absorption (given by I—StS [35])
can be written as:

A=T1-515= 4K (Q—w) T [ImQ (Q-w) " KT, (31)

after repeated use of KTK = 2Im( and the matrix identity Im [XTYX] = XT[ImY]X. From Eq. (31), one can
integrate over all frequencies to simplify the interior matrix product involving frequencies (which is a diagonal matrix
with Lorentzians along the diagonal) to a constant. Finally, one is left with an expression involving only the loss rates
of each resonator and the number of resonances [36-38]. But what are these values? How large can they be? One
is always left with more free unconstrained parameters. And the extreme limits of these models, where one wants to
operate for fundamental limits, are precisely where the assumptions mentioned above (high-Q resonances, uncoupled
resonances, {requency-independent K matrix, isolated resonances, no background processes, etc.) break down. By
contrast, the utility of CMT for modeling complex electromagnetic structures has been a theoretical bounty for twenty
years [20, 22-24, 39-44], and CMT is well-deserving of its popularity for such scenarios.

To move beyond the assumptions of CMT, expansions via quasinormal modes (QNMs) have become more popular
in recent years. There are various expansion techniques, many of which can be shown to be equivalent [26]. We will
assume a Maxwell equation of the form

(M — w?e)e = iwj, (32)

where we assume a sufficiently high-resolution discretization of Maxwell’s equations, for matrix M and diagonal matrix
€, unknown electric-field vector e, and free-current source vector j. The boundary conditions or PMLs are assumed
to be encoded in the matrix M, as well as the curl-curl operator. The pair of matrices M and e form generalized
eigenproblem pairs according to MU = eUA, where U are the eigenfields and A the squared eigenfrequencies. We
can assume reciprocity, in which case U~! = U”. Inserting this eigendecomposition into our Maxwell equation and
solving for the electric field yields

e =iwl (A—w?) U e (33)

One can interpret Eq. (33) intuitively: UTe~!j is a decomposition of normalized free currents into modal fields,

(A — wQ)_l is the resonant enhancement associated with real frequencies close to the resonant frequencies, and the
final U on the left converts from the modal basis back to the original (real-space) basis. Superficially, Eq. (33)
actually looks quite similar to the coupled-mode scattering-matrix equation of Eq. (27): a resonant amplification
term inversely proportional to the differences between the complex-valued resonant frequencies and the real excitation
frequencies, and frequency-independent matrices surrounding the resonant-amplification term. However, to connect
to the “scattering channels” that bring energy into or out of such systems, one would need to pre- and post-multiply
these matrices with Green’s-function matrices that are highly frequency-dependent. Then, again, one is left with
a complex set of degrees of freedom: the number of resonances (the size of A and number of columns of U), the
locations of the resonant poles in the complex plane (the values of A), and the resonant field patterns (the values of
the columns of U). There are almost no constraints on these degrees of freedom, except that the field patterns must
be orthogonal in the unconjugated inner product, corresponding to U7 U = I. There is no meaningful way to convert
this representation to upper bounds or fundamental limits. Again, however, this representation is quite useful for
modeling, with a number of exemplary successes over the past decade [25-31, 45].

To summarize: Egs. (27,33) are the key “physical-oscillator” descriptions of classical scattering processes. At a
glance, they share similarities with each other and with the T-matrix representation of the main text: at a coarse
level, each has a resonant-enhancement term and one or more matrices that can be described as a “coupling” matrix.
With more granularity, however, there are crucial mathematical differences between the two expressions of Egs. (27,33)
with the T matrix expression. In the CMT and QNM approaches, all of the degrees of freedom (the resonant pole
locations and the coupling matrices) are complex-valued quantities without any Hermiticity or positive-definiteness



qualities. Moreover, the number of resonances can never be constrained for the arbitrarily patterned nanophotonic
systems of interest. By contrast, in the T matrix expansion, all of the “resonant poles” are approaching the real
axis, there is an infinite set (one need not limit the number of “resonances”), the degrees of freedom (the scattering-
oscillator strengths) are positive semidefinite, Hermitian matrices, and their sum is constrained, thanks to sum rules.
Because their poles are not related to the normal- or quasinormal-mode eigenfrequencies, T matrix expansions are
computationally expensive for a given structure. But in optimizations over all possible geometries, their mathematical
structure is unique, and pays significant dividends.

Supplementary Note 5. LOW-FREQUENCY NEAR-FIELD SUM RULE FOR THE T MATRIX

In the NFRHT bound, we used the generalized polarizability for two half-spaces, aons = 2. To derive this result,
we first consider a simple case of a single half-space interface parallel to the xy-plane, and the medium in z < 0
has permittivity €; = 1 while the medium in z > 0 is our half-space scatterer that has permittivity ;. A general

electrostatic source is located in the air side, and at z = —d away from the interface. In electrostatics, away from the
source and the interface, one can write E = —V1 where V29 = 0. At each z, ¥ can be expressed with a 2D Fourier
integral:
+oo
Y(w,y,z) = // dkodky O (ka, by, k) =ttt (34)
—00

where 1) is the 2D Fourier transform of 1. Away from the source and the interface, one can solve the electrostatic
Poisson’s equation and obtain the expressions for the electric field:

+oo
E(z,y,2) = // dkydky (kg ky, ko) U (ky, k) eRevtikuytik=2 (35)
oo
+00
+ // dk,dky (ky, Ky, —k.) V (g, k) e'Rettikyy—ik=2 (36)
for —d < z < 0, and
+oo
E(z,y,z) = // dk,dky (ky, Ky, ko) W (ky, k) etkerTikyyTiksz (37)
s

for z > 0, where U, V, and W are the plane-wave modal field amplitudes for the incoming, the reflected and the
transmitted fields. Note that in electrostatics, not only k, and k, but also k, = i, /k2 + kg are conserved across the
interface.

To find T(w = 0), we need to find the relation between the polarization current P = yxE and the incident field
E;,. in the region z > 0, which is essentially finding the Fresnel coefficients. What are the Fresnel coefficients in
electrostatics? As pointed out in Ref. [46], Fresnel equations apply to statics, and for electrostatic sources:

Vv €1 — &2

= = 38
" U ¢e1+eées (38)

w 261
t= — = 39
U €1+ €9 (39)

Importantly, note that the Fresnel coefficients are independent of %k, and k,, and therefore after the inverse Fourier
transform, we have E = tE;,., and a = xt. Similarly, the arguments expressing the fields with Fourier basis apply
when we consider two parallel half-spaces separated by dy, but the transmission coefficient needs to be substituted by
that of two interfaces

t (1 + rezikzd)

1 — y2¢2ik=do (40)

tons =
2

Using e =1 — % at w — 0, one can obtain tops(w = 0) = % and aops = xtons = 2. Therefore the electrostatic T

matrix for the bounding volume of two half-spaces is T(w = 0) = aops] where agps = 2.



Supplementary Note 6. SCATTERING SIMULATION PARAMETERS FOR FIG. 1

In this section we provide the detailed simulation data and techniques for Fig. 1 of the main text. The elliptical
cylinder has susceptibility x = 4, width D, = 2.4a, and height D, = 1.6a, where a is a scale factor for length
normalization. To obtain accurate results using the simulation method we will introduce below, the sharp edge of the
geometry need to be smoothed. In this example, the susceptibility distribution of the elliptical cylinder is expressed

as
(x )_K 1+ tanh |c 1— li_|_£ (41)
X\, y 2 1 D% D§ ’

where ¢; is inversely proportional to the width of the smoothed area along the circumference of the ellipse. For the
full-wave simulation, we use our own direct solver utilizing a discrete dipole approximation (DDA) augmented by a
Duan-Rokhlin quadrature [47, 48]. The simulation region is a square of side length 3.0a. Discretization of the square
region gives 192 grid points along both x and y direction. There are 501 frequency sampling points ranging from
0.02 to 1, in units of 27c¢/a. The T matrix is obtained from Eq. (5), which is T = —(Gq + £I)71, where Gy is the
vacuum Green’s function matrix and £ = 7%’ both defined on the volume of scatterer. We use 6th-order Duan-

Rokhlin correction for accurate computation of G, guaranteeing accuracy of less than 0.01% error in the computed
extinguished power of the structure, at all frequencies of interest.

For plotting the Eycay and T matrix elements, we select 3 random points inside the scatterer: x; = (—0.79, —0.36)a,
x9 = (0.74,—0.12)a, and x5 = (0.93,0.31)a, using the center of the ellipse as the origin. The incident field is a plane
wave propagating along the y direction with the electric field polarized perpendicular to the plane.

Supplementary Note 7. OPTIMAL FREQUENCIES OF NFRHT FOR STATE-OF-THE-ART
MATERIALS

In Ref. [49] we study optimal bulk Drude materials, deriving a “near-field Wien’s law” and identifying peak spectral-
HTC frequencies for such materials. The peak-HTC frequencies for the optimal bulk material (red asterisks in Fig.
2(d)) are wepy, = 2.57% according to the near-field Wien’s law, where h is reduced Planck’s constant and kp is
Boltzmann constant.

Next, we studied optimal 2D heterostructures. We optimize over 2D materials with different in-plane conductivities,
each parametrized by a combination of resonance frequencies and material loss rates. Furthermore, multiple different
layers of 2D materials directly stacked together constitute 2D heterostructures and we focus on optimizing those with
1,2 and 3 different monolayers. We find optimal NFRHT efficiency is achieved with a single optimal layer of 2D
material, and multiple stackings do not perform better. The spectral response of this structure as well as that of the
optimal bulk Drude material are shown in Fig. 2(c). The exact data for optimal frequencies (red and blue asterisks
in Fig. 2(d)) are listed below:

Temperature (K) Optimal bulk Drude (eV) Optimal 2D heterostructure (eV)
100 0.0222 0.0227
200 0.0444 0.0455
300 0.0665 0.0683
400 0.0887 0.0912
500 0.1109 0.1141
600 0.1331 0.1370
700 0.1552 0.1604
800 0.1774 0.1838
900 0.1996 0.2072
1000 0.2218 0.2291
1100 0.2440 0.2511
1200 0.2661 0.2730
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