
Chapter 2 
Fundamental Limits to Near-Field 
Optical Response 

Owen D. Miller 

Abstract Near-field optics is an exciting frontier of photonics and plasmonics. The 
tandem of strongly localized fields and enhanced emission rates offers significant 
opportunities for wide-ranging applications while also creating the following basic 
questions: How large can such enhancements be? To what extent do material losses 
inhibit optimal response? Over what bandwidths can these effects be sustained? 
This chapter surveys theoretical techniques for answering these questions. We 
start with physical intuition and mathematical definitions of the response functions 
of interest (LDOS, CDOS, SERS, NFRHT, etc.), after which we describe the 
general theoretical techniques for bounding such functions. Finally, we apply those 
techniques specifically to near-field optics, for which we describe known bounds, 
optimal designs, and open questions. 

2.1 Introduction 

Near-field optics is an exciting frontier of photonics and plasmonics. The near field 
is the region of space within much less than one electromagnetic wavelength of 
a source, and “near-field optics” refers to the phenomena that arise when optical-
frequency sources interact with material structures in their near field. Free-space 
waves exhibit negligible variations over such small length scales, which might lead 
one to think this regime simply reduces to classical electrostatics and circuit theory. 
A new twist in the optical near field is the emergence of polaritons, modes that 
arise near the interfaces between negative- and positive-permittivity materials [1]. 
Polaritons emerge from an interplay of geometry and material susceptibility, instead 
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of geometry and wave interference, to confine optical waves. Freedom from wave-
interference requirements leads to a striking possibility: resonant fields whose size 
(spatial confinement) is decoupled from its wavelength. Highly confined polaritons 
enable two reciprocal effects: incoming free-space waves can be concentrated to 
spatial regions much smaller than the electromagnetic wavelength (well below the 
diffraction limit) and, conversely, that patterned materials close to a dipolar emitter 
can significantly amplify outgoing radiation. 

The tandem of strongly localized fields and enhanced emission rates offers sig-
nificant opportunities for applications including spectroscopy [2, 3], nanolasers [4], 
coherent plasmon generation [5], and broadband single-photon sources [6]. It also 
generates the following fundamental questions: How large can such enhancements 
be? Are there limits to field localization? All known polaritonic materials have 
significant or at least nontrivial amounts of material loss; to what extent does the 
loss affect these quantities? Over what bandwidths can these effects be sustained? 

This chapter surveys theoretical techniques for answering these questions. 
The same features that make the near field appealing also make it theoretically 
challenging: there are not fixed photon flows, modal descriptions require exquisite 
care, and analytical descriptions are not possible except in the simplest high-
symmetry scenarios. Over the past decade, thankfully, there has been a surge of 
interest in identifying what is possible in these systems. One key to the success of 
these approaches is to not attempt to develop models that apply to every possible 
instance of a given scattering scenario, but instead to develop techniques that 
identify bounds to the extreme possibilities of each scattering scenario. In this 
chapter, we describe these techniques in detail. We start with physical intuition 
and mathematical definitions of the response functions of interest (Sect. 2.2), after 
which we describe the general theoretical techniques for bounding such functions 
(Sect. 2.3). Finally, we apply those techniques specifically to near-field optics, for 
which we describe known bounds, optimal designs, and open questions (Sect. 2.4). 

2.2 Near-Field Optical Response Functions 

In this section, we summarize the background intuition and mathematical equations 
describing six key near-field optical response functions: local density of states 
(Sect. 2.2.1), which is proportional to the radiation of a single dipolar current; 
free-electron radiation (Sect. 2.2.2), which is the collective radiation of a line of 
current created by an electron beam; the cross density of states (Sect. 2.2.3), which 
measures modal or emission correlations across different spatial locations; surface-
enhanced Raman scattering (Sect. 2.2.4), which is the simultaneous enhancement 
of incident radiation and outgoing luminescence, typically for imaging or sensing 
applications; near-field radiative heat transfer (Sect. 2.2.5), which is the transfer of 
radiative energy from a hot body to a cold one, at near-field separations; and mode 
volume (Sect. 2.2.6), which refers to the spatial confinement of a resonant mode. 
Many of these response functions are depicted in Fig. 2.1.
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Fig. 2.1 An array of near-field optical response functions of broad interest (Adapted from Ref. [7]) 

2.2.1 LDOS 

The first and arguably most important near-field response quantity is the local 
density of states (LDOS). The central role of LDOS is a result of the extent to which 
it underpins many connected ideas in near-field optics [8]. 

The first connection is to the power radiated by a dipole. In general, the work per 
time done by a field . E on a current . J in a volume V is given by .(1/2)Re

∫
V

J∗ · E. 
This is a generalized version of Watt’s law in circuit theory, and it encodes the work 
done by the electric field mediating the electric force on the charges in the current, 
across a distance traveled by the charges given by the product of their speed and 
the time interval of interest. By Newton’s second law, the work per time done by a 
current . J on a field . E is the negative of the expression above, .−(1/2)Re

∫
V

J∗·E. We  
can convert the current density . J to a dipole density . P by the relation . J = ∂P/∂t =
−iωP for harmonic frequency . ω (.e−iωt convention). Then the power radiated by a 
dipole at . x0 with dipole moment . p (and therefore dipole density .P = pδ(x − x0)) is  

. Prad = −1

2
Re

∫

V

J∗ · E dx

= ω

2
Im

∫

V

P∗ · E dx

= ω

2
Im

[
p∗ · E(x0)

]
.

The electric field at . x0, .E(x0), is the field produced by a delta-function dipole source, 
which exactly coincides with the dyadic Green’s function (GF) . G, evaluated at . x0
from a source at . x0, multiplied by the dipole moment . p, giving: 

. Prad = ω

2
Im

[
p∗ · G (x0, x0) p

]
.

The imaginary part of a complex number of the form .z†Az is . Im(z†Az) =
z†(ImA)z by symmetry, where .ImA refers to the anti-Hermitian part of A (. ImA =
(A − A†)/2i). So we have
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.Prad = ω

2
p† [ImG (x0, x0)]p. (2.1) 

This result gives us the first key near-field response function, the imaginary part of 
the Green’s function evaluated at the source position, 

. ImG(x0, x0), (2.2) 

which is proportional to the radiation rate of an electric dipole into any environment. 
Spontaneous emission typically occurs via electric-dipole transitions in atomic 

or molecular systems, so the rate of spontaneous emission is governed by the 
imaginary part of the GF. It has been recognized for many decades that this rate 
is not an immutable constant, but a function of the environment. Just as specifying 
the amplitude of a current or voltage source in a circuit does not dictate the 
power delivered by the source, which depends on the impedance of the load, 
specifying the amplitude of a dipole moment does not dictate the power it delivers 
to its electromagnetic environment. This fact inspired the concept of a photonic 
bandgap [9] and photonic crystals [10, 11], with the goal of inhibiting spontaneous 
emission, originally to avoid laser power loss. It has conversely inspired significant 
effort toward amplifying spontaneous emission, for applications such as single-
molecule imaging [2, 3]. An early recognition of this fact came from Purcell, who 
noted that an emitter radiating into a single-photonic-mode environment would have 
an altered spontaneous-emission rate [12]. Purcell recognized that for a single-mode 
resonator with quality factor Q and mode volume V , the density of states (per unit 
volume and per unit frequency) becomes .(Q/ω)/V . The relative change of the 
spontaneous-emission rate is the Purcell factor, which is proportional to .λ3Q/V . 

Purcell derived this expression in the context of enhancing magnetic-dipole 
transitions in spin systems, but exactly the same argument applies to electric-
dipole transitions, where it is most used today. This expression drives many modern 
investigations of high-quality-factor and/or small-mode-volume cavity design [13– 
19], to reach the largest Purcell enhancement possible. It can be generalized to 
multimode, high-Q systems: if each mode has mode field . Ei , center frequency . ωi , 
and half-width-at-half-maximum . γi (corresponding to a mode lifetime of .1/(2γi)), 
the power radiated by a dipole with moment . p located at position . x0 is [20] 

.Prad ≈ ω2

4

∑

i

γi |E†
i (x0)p|2

(ω − ωi)2 + γ 2
i

(2.3) 

In the limit of infinite Q, the Lorentzian lineshapes become delta functions, and the 
summation simplifies to delta functions multiplied by the overlap of modal fields 
with the dipole moment. The overlap of each mode with the dipole is a measure of 
the relative modal energy concentration at that particular point in space. Hence, the 
overall summation can be understood as a local density of states, or LDOS (with 
appropriate prefactors). The power radiated by a dipole into an electromagnetic 
environment, then, is directly proportional to the local density of electromagnetic
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modes; inserting the correct prefactors leads to an LDOS expression in terms of 
.ImG [8, 21–23]: 

.LDOS(ω, x) = 1

πω
Tr ImG(x0, x0), (2.4) 

where the trace encodes a summation over all independent polarizations. (Note that, 
e.g., Ref. [8] defines the Green’s function with an extra .1/ω2 factor, which leads to . ω

in the numerator of their analog to Eq. (2.4).) In free space, the LDOS coincides with 
the density of states (as there are no spatial variations) and is given by . LDOS(ω) =
ω2/2π2c3. Technically, the expression of Eq. (2.4) is the  electric LDOS; one can 
similarly define a magnetic LDOS through a summation over the relative magnetic-
field strengths, or more generally by the power radiated by a magnetic dipole. For 
a magnetic Green’s function .G(HM), denoting the magnetic field from a magnetic-
dipole source, the magnetic LDOS is [8] 

.LDOS(m)(ω, x) = 1

πω
Tr ImG

(HM)(x0, x0). (2.5) 

The sum of Eqs. (2.4) and (2.5) is referred to as the total LDOS, representing the 
totality of electric- and magnetic-field energy localized to a point . x0, at frequency 
. ω, over all modes. (Significant alterations to the modal-decomposition expressions 
are needed, e.g., in plasmonic (and polaritonic) systems [24, 25].) Such descriptions 
are mathematically accurate only in the high-quality-factor, nonoverlapping-mode 
limit [26, 27], but the dipole-radiation interpretation generalizes to any linear 
scattering scenario. 

To summarize, the imaginary part of the Green’s function, .ImG(x0, x0), is a  
measure of the power radiated by electric and/or magnetic dipoles in an arbitrary 
environment, which is proportional to the spontaneous-emission rate of a dipolar 
emitter, and it encapsulates the Purcell factor, particularly the ratio .Q/V , of high-
quality-factor modes that concentrate energy at that point. We have extensively 
described LDOS due to its versatility and cross-cutting nature. The following 
quantities have more focused and niche applications and can be described more 
concisely. 

2.2.2 Free-Electron Radiation 

Radiation by a free-electron beam is closely related to LDOS, with the key 
distinction being that the current distribution is now a line source. An electron 
(charge . −e) propagating through free space at constant velocity . vx̂ comprises a free 
current density .J(r, t) = −x̂evδ(y)δ(z)δ(x − vt), which generates a frequency-
dependent incident field [28]:
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.Einc = eκpeikvx

2πωε0

[
x̂iκρK0(κρρ) − ρ̂kvK1(κρρ)

]
, (2.6) 

written in cylindrical coordinates .(x, ρ, θ), where .Kn is the modified Bessel 
function of the second kind, .kv = ω/v, and .κρ = √

k2v − k2 = k/βγ (.k = ω/c, 
free-space wavevector; .γ = 1/

√
1 − β2, Lorentz factor). When there is no back-

action on the source from its interactions with a scatterer, then the free-electron 
photon emission and energy loss is a typical scattering problem, with Eq. (2.6) as  
the incident field. 

An important feature of Eq. (2.6) is that the incident field is entirely evanescent 
(the asymptotic decay of the special function . Kn is given by .e−kr/kr in the far 
field). This is expected on physical grounds, as an electron moving at constant 
velocity cannot radiate. Once a scattering body is brought close to the electron beam, 
however, the situation changes: the evanescent incident field can excite modes in 
the scatterer that couple to far-field radiation. (Physically, the electromagnetic-field-
mediated interaction of the electron beam with the scatterer can lead to deceleration 
and therefore radiation.) The radiated power can be computed by an LDOS-like 
expression, . 12 Re

∫
J∗ · E, where . J is the free-electron current density, but the bound 

techniques developed below for scattering bodies are most easily applied to the 
polarization fields . P within the scatterer, so we prefer an equivalent expression in 
terms of . P. One option would be a linear combination of a direct-radiation term with 
a scatterer-interaction-radiation term, but the evanescent-only nature of the incident 
field implies that the direct-radiation term is zero. Instead, the only power lost by the 
electron beam is that which is extinguished by the scatterer, into absorption losses 
or far-field radiation. As we discuss more thoroughly in Sect. 2.3.1, the extinction 
of a scattering body V is given by 

.Pext = ω

2
Im

∫

V

E∗
inc(x) · P(x) dx, (2.7) 

which we will use to analyze the free-electron loss, as .Ploss = Pext. 
When the beam passes by the scatterer without intersecting it, the resulting 

radiation is referred to as Smith–Purcell radiation. When the beam passes through 
the scatterer, causing radiation, it is referred to as transition radiation. And when 
the beam radiates while propagating inside a refractive medium (within which the 
modified speed of light can be smaller than the electron speed), it is referred to as 
Cherenkov radiation. The Smith–Purcell process resides squarely in the realm of 
near-field electromagnetism. 

2.2.3 CDOS 

In Sect. 2.2.1, we showed that the power radiated by a single dipole at position . x is 
proportional to the LDOS at that point, which itself is proportional to .ImG(x, x).
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Consider now the power radiated by two dipoles, . p1 and . p2, at positions . x1 and . x2, 
for a total dipole density of .P(x) = p1δ(x − x1) + p2δ(x − x2). The power they 
jointly radiate is given by 

. Prad = ω

2

∫

V

∫

V ′
P(x) ImG(x, x′)P(x′) dx dx′

= ω

2

{
p†
1 [ImG(x1, x1)]p1 + p†

2 [ImG(x2, x2)]p2

+p†
1 [ImG(x1, x2)]p2 + p†

2 [ImG(x2, x1)]p1

}
. (2.8) 

The first two terms are the powers radiated by the two dipoles in isolation (or when 
incoherently excited); the second pair of terms is the positive or negative contri-
bution that arises for constructive or destructive (coherent) interference between the 
two dipoles. For reciprocal media (of arbitrary patterning), the third and fourth terms 
are complex conjugates of each other, such that we can just consider one of them 
(say, the third term) in determining the two-dipole interference. By analogy with 
Eq. (2.4), we can define a cross density of states (CDOS) by the expression: 

.CDOSij (ω, x1, x2) = 1

πω
ImGij (x1, x2), (2.9) 

which differs from Ref. [29] only by the absence of a 2 in the prefactor. The sign of 
the CDOS indicates the sign of the interference term, while its magnitude is a field-
correlation strength between the two points of interest in a given electromagnetic 
environment. The amplification of emission that can occur when the sign is positive 
is an example of superradiance, while the reduction of emission when the sign 
is negative is an example of subradiance, in each case mediated by the local 
CDOS [30]. Because the CDOS is the off-diagonal part of a positive-definite matrix, 
it is straightforward to show that its magnitude is bounded above by the square root 
of the product of the diagonal terms in the matrix, i.e., the local densities of states 
of the two dipoles in isolation [31]. 

In systems that are closed, or approximately closed, there is another interesting 
interpretation of the CDOS [29, 31]. Just as the LDOS can be interpreted as a 
local modal density, the CDOS can be interpreted as a local modal connectivity— 
it is a measure of spatial coherence between two points. In Ref. [29], it was 
shown the one can compute local coherence lengths from spatial integrals of the 
CDOS. From these local coherence lengths, it was unambiguously demonstrated 
that “spatial squeezing” of eigenmodes occurs in systems of disordered plasmonic 
nanoparticles. This plausibly explains surprising experimental results when probing 
the local response of such disordered films [32], showing the value of CDOS as an 
independent concept from LDOS. 

There are two other areas in which CDOS emerges as a key metric: Forster energy 
transfer [33–35] and quantum entanglement and super-radiative coupling between 
qubits [36–40]. The general idea in each case is a dipole . p1 transferring energy to
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a second dipole . p2. In this scenario, . p1 and . p2 are considered fixed. By Poynting’s 
theorem, the energy flux into a small bounding surface of . p2, for a field . E1 generated 
by . p1, is  

.
ω

2
Im

[
p†
2E1(x2)

]
= ω

2
Im

[
p†
2G(x2, x1)p1

]
, (2.10) 

which is a form of the CDOS. The fixed nature of the second dipole, . p2, is crucial 
for the CDOS metric to be the correct one. If the second dipole is induced by the 
field emanating from the first dipole, then .p2 = α2E1(x2), and the correct energy-
transfer expression would be the imaginary part of the polarizability multiplied by 
the squared absolute value of the Green’s function. 

2.2.4 Surface-Enhanced Raman Scattering (SERS) 

Surface-enhanced Raman scattering is a technique whereby molecules are 
excited by a pump field, subsequently emitting Stokes- (or anti-Stokes-) shifted 
radiation (fluorescence) that can be used for imaging or identification [41–44]. 
The small cross sections of most chemical molecules result in very low pump 
and emission efficiencies in conventional Raman spectroscopy [45], but one can 
engineer the near-field environment to enhance both the concentration of the 
pump field and the emission rate. Efficiency improvements of up to 12 orders 
of magnitude have been demonstrated, enabling single-molecule detection and a 
variety of applications. 

SERS is a nonlinear process, in which a single dipolar molecular sees both a 
pump enhancement and a spontaneous-emission enhancement. A key insight for 
understanding SERS is that the weakness of the nonlinearities of the individual 
molecules means that the nonlinear process can be treated as the composition 
of linear processes, in which the pump first enhances the excited-population 
densities (or, classically, the dipole amplitudes), and then the spontaneous-emission 
enhancements can be treated as a second step, essentially independent of the first. 

We can write the key metric of SERS by considering these two steps in sequence, 
following a procedure outlined in Ref. [46]. First, an illumination field at frequency 
. ω0 impinges upon the molecule and its environment; in tandem, a total field 
of .Eω0(x0) is generated at the molecule. The Raman process generates a dipole 
moment at frequency . ω1 given by 

.pω1 = αRamanEω0(x0) (2.11) 

where .αRaman is the molecular polarizability. Next, the power radiated at . ω1 by this 
dipole is given, per Eq. (2.1), by 

.Prad,ω1 = p†
ω1

[
ImGω1(x0, x0)

]
pω1 . (2.12)
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Hence, we see that there are two opportunities for amplification of SERS: concen-
trating the incoming field .Eω0 that determines the dipole amplitude and enhancing 
the outgoing radiation by maximizing the LDOS, proportional to .ImGω1(x0, x0), at  
the location of the dipole. To separate the two contributions, we can write the dipole 
moment as .p = ‖αE‖ (αE/‖αE‖), i.e., an amplitude multiplied by a unit vector. If 
we denote the unit vector as . ̂pω1 , then we can write 

.Prad,ω1 = ‖αRamanEω0‖2p̂†
ω1

[
ImGω1(x0, x0)

]
p̂ω1 , (2.13) 

where now the first term encapsulates .ω0-frequency concentration, and the second 
term encapsulates .ω1-frequency LDOS-enhancement. Straightforward arguments 
lead to a net SERS enhancement, relative to a base rate . P0 without any nearby 
surface, given by 

.
Prad,ω1

P0
=
( ‖αRamanEω0‖2

‖αRaman‖2‖Einc,ω0‖2
)(

ρp̂,ω1

ρ0,ω1

)

, (2.14) 

where .‖α‖ refers to the induced matrix norm of . α, .ρp̂,ω1 is the .ω1-frequency 
LDOS for a .p̂-polarized dipole, and .ρ0,ω1 in this expression is the background 
.ω1-frequency LDOS of a .p̂-polarized dipole (not the typical summation over all 
polarizations). The two parenthetical terms in Eq. (2.14) must both be bounded to 
identify fundamental limits to SERS enhancements. 

2.2.5 Near-Field Radiative Heat Transfer 

The warming of the cold earth by the hot sun is mediated by radiative transfer, 
i.e., photons radiated from the sun to the earth. The maximum rate at which such a 
process could occur is of course given by the blackbody rate, which is determined 
only by the solid angle subtended by the earth from the sun (or vice versa). 
Determination of this blackbody rate requires no knowledge of multiple-scattering 
processes between the two bodies. In the far field, the only “channels” (carriers 
of power into and out of a scattering region) are propagating-wave channels; by 
Kirchhoff’s law [47], one need only know the absorption or emission rates of the 
two bodies in isolation to know their maximum radiative-exchange rate. A more 
general viewpoint of far-field radiation, via the idea of communication channels, is 
discussed in Sect. 2.3.2. 

It has been known for 75 years [48, 49] that two bodies separated by less than 
a thermal wavelength can exchange radiative heat at significantly larger rates than 
their far-field counterparts. Once in the near field, the bodies can exchange photons 
not only through radiative channels but also through evanescent channels; moreover, 
as the separation distance d is reduced, the number of evanescent channels that 
can be accessed increases dramatically, scaling as .1/d2. These channels can be 
accessed via any mechanism that produces strong near fields. Polaritonic surface
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waves, via either plasmons or phonon–polariton materials, are a natural choice, and 
hyperbolic metamaterials (whose strongest effect is not surface waves but instead 
high-wavenumber bulk modes with nonzero evanescent tails) can provide similar 
performance [50, 51]. Photonic crystals can also support surface waves, but the 
confinement of those waves is typically related to the size of their bandgap [11], 
thereby scaling with frequency, yielding surface waves with significantly less 
confinement than their metallic counterparts. 

The complexity of near-field radiative heat transfer (NFRHT) is daunting, 
both experimentally and theoretically. The first experimental demonstrations of 
enhancements in NFRHT via near-field coupling were not achieved until the 
2000s [52–54], many decades after the original predictions [48, 49], and measure-
ments in the extreme near field were not achieved until 2015 [55]. There are a 
number of technical hurdles to experimental measurements, especially maintaining 
consistent, nanometer-scale gap separations over large-scale device diameters while 
simultaneously measuring miniscule heat currents [55]. 

The theoretical challenge has been no less severe. NFRHT involves rapidly 
decaying near fields (requiring high resolution), typically over large-area surfaces 
(requiring a large simulation region), for spatially incoherent and broadband thermal 
sources (such that the equivalent of very many simulations is needed). The com-
putational complexity of this endeavor has limited the analysis of NFRHT almost 
exclusively to high-symmetry structures (planar/spherical bodies, metamaterials, 
etc.) [56–61], small resonators [58, 62], two-dimensional systems [63], and the like. 
We review the planar-body interaction, which is informative, while emphasizing the 
need (and opportunity) for new theoretical tools to understand what is possible when 
exchanging radiative heat in the near field. (Casimir forces [64–66] are theoretical 
brethren of NFRHT, the only difference being that they arise from zero-point instead 
of thermal fluctuations. Though we do not review them here, there is at least one 
recent work developing theoretical bounds/upper limits using techniques similar to 
those described throughout this chapter [67].) 

Consider two near-field bodies with temperatures . T1 and . T2, respectively. By 
the fluctuation–dissipation theorem, the incoherent currents in body 1, . J1, have  
ensemble averages (denoted . 〈〉) given by [58] 

.〈J1(x, ω)J†1(x
′, ω)〉 = 4ε0ω

π
Im [χ1(x, ω)]Θ(ω, T1)δ(x − x′)I, (2.15) 

where .χ1(x, ω) is the material susceptibility of body 1, . I is the 3. ×3 identity matrix, 
and .Θ(ω, T ) is the Planck distribution: 

.Θ(ω, T ) = h̄ω

eh̄ω/kT − 1
. (2.16) 

These currents radiate to body 2, at each frequency . ω, at a rate that we denote 
.Φ21(ω). The  rate  .Φ21(ω) is given by the ensemble average of the flux into body 
2, i.e., .〈− 1

2 Re
∫
S2

E × H∗ · n̂〉, where . S2 is a bounding surface of . V2, . ̂n is the
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outward normal, and the field sources are given by Eq. (2.15), except without the 
Planck function. The Planck function is separated so that .Φ21(ω) is independent 
of temperature and depends only on the electromagnetic environment. Then the 
radiative heat transfer rate into 2 from currents in 1, denoted . H21, is given by 

.H21 =
∫

Φ21(ω)Θ(ω, T1) dω. (2.17) 

Similarly, the rate of transfer from body 2 to body 1, . H12, is given by 

.H12 =
∫

Φ12(ω)Θ(ω, T2) dω, (2.18) 

and the net transfer rate is the difference between the two. For reciprocal bodies, 
the rates .Φ12(ω) and .Φ21(ω) are always equal (by exchanging the source and 
“measurement” locations), but this is also true more generally: for two bodies 
exchanging radiative heat in the near field, .Φ12(ω) and .Φ21(ω) must be equal, or 
else one could have net energy exchange with both bodies at equal temperatures, in 
violation of the second law of thermodynamics. Note that if three bodies are present, 
or either body radiates significant amounts of energy into the far field, this relation 
need not hold in nonreciprocal systems, and indeed “persistent currents” have been 
predicted in three-body systems in the near field [68]. Throughout this chapter, we 
will focus on the prototypical two-body case, so we can take 

.Φ12(ω) = Φ21(ω) = Φ(ω), (2.19) 

without assuming reciprocity. Hence, the net NFRHT rate between the two bodies 
is given by 

.H2←1 =
∫

Φ(ω) [Θ(ω, T1) − Θ(ω, T2)] dω. (2.20) 

Often, it is illuminating to reduce the problem to a single temperature T and 
study the differential heat transfer for a temperature differential . ΔT . The net heat 
exchange divided by this temperature differential is the heat transfer coefficient, or  
HTC, which is given by Eq. (2.20), except that the temperature difference is replaced 
by a single derivative of .Θ(ω, T ) with respect to temperature: 

.HTC =
∫

Φ(ω)
∂Θ(ω, T )

∂T
dω. (2.21) 

Hence, the quantity .Φ(ω) is the designable quantity in NFRHT and is the focus of 
the NFRHT bounds appearing across Sect. 2.4.
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2.2.6 Mode Volume 

Finally, we turn to a unique near-field quantity: mode volume. Intuitively, mode 
volume encapsulates an “amount of space” occupied by an electromagnetic mode. 
Obviously, defining the volume of a continuous density is necessarily subjective. 
But we can develop an intuitive approach to the common volume definition. The 
energy density of a mode m at any point . x is proportional to .ε(x)|Em(x)|2. If the  
maximum energy density occurs at a point . x0, we can define the volume of the mode 
as follows: let us redistribute the energy into a binary pattern in which at every point 
in space, it can only take the values 0 or .ε(x0)|Em(x0)|2. Let us also require that 
the total energy of the mode will not change in this binarization, i.e., . 

∫
ε(x)|E(x)|2

remains fixed. Then the corresponding redistributed field will occupy the volume: 

.Vm =
∫

ε(x)|Em(x)|2
ε(x0)|Em(x0)|2 . (2.22) 

Typical modes of interest, which have strong field concentration and Gaussian- or 
Lorentzian-like energy decay, are well-suited to such an interpretation. 

More rigorously, per Eq. (2.3), the modal field intensity is the quantity that 
determines the interaction of a dipole with a specific mode, and the contribution 
of that mode to the spontaneous emission of the dipole. Then an alternative 
interpretation of the quantity in Eq. (2.22) is that the numerator can be taken to 
be 1, for a normalized mode, and the denominator is the relevant coupling term in 
the Hamiltonian that is to be maximized. This alternative approach explains why a 
common mathematical objective is to minimize the expression in Eq. (2.22), without 
reference to any physical concept of volume. 

A critical question around mode volume is whether such a concept is even valid. 
For closed (or periodic) systems with nondispersive, real-valued permittivities, 
the Maxwell operator is Hermitian, and there is an orthogonal basis of modal 
fields that can be orthonormalized. Dispersion in the material systems makes the 
eigenproblem nonlinear, but for Drude–Lorentz-like dispersions, one can introduce 
auxiliary variables, and in this higher-dimensional space, there is again a linear, 
Hermitian eigenproblem [69]. But once losses are introduced, either through open 
boundary conditions or material dissipation, the operator is no longer Hermitian, and 
the modes cannot be orthonormalized with an energy-related inner product [25]. 
Instead, one must work with quasinormal modes (QNMs), for which two issues 
arise. 

If material losses are the dominant loss mechanism, as is typical in plasmonics, 
then the key new subtlety often is the modification of orthogonality: the modes are 
orthogonal in an unconjugated “inner product” (e.g., .

∫
εE1·E2 instead of .

∫
εE∗

1·E2), 
which then replaces the standard conjugated inner product in modal expansions 
such as Eq. (2.3). While this is mathematically convenient, it can stymie our typical 
intuition. A beautiful example is demonstrated in Ref. [24]. There, it is shown that 
the spontaneous emission near a two-resonator antenna can be dominated by two
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QNMs, as expected. However, if one tries to attribute individual contributions from 
each QNM, one of the QNMs appears to contribute negative spontaneous emission. 
This is attributable to the modified inner product: modes that are orthogonal in the 
unconjugated inner product are not orthogonal in an energy inner product, and their 
contributions to a positive energy flow (such as spontaneous emission) are invariably 
linked; one can no longer separate a power quantity such as LDOS into individual 
contributions from constituent modes. Ultimately, one can define mode volume as a 
complex-valued quantity [70], in which case it no longer becomes an independent 
quantity of interest to minimize or maximize, but rather an ingredient for other 
scattering quantities of interest. 

If radiation losses are the dominant loss mechanism, one faces a hurdle even 
before orthogonality: just normalizing the modal fields becomes tricky. If the modal 
fields eventually radiate in free space, they will asymptotically scale as .eikmr/r , 
where .km = ωm/c is the wavenumber of the mode and r is a distance from the 
scatterer. But the losses to radiation transform the resonant eigenvalues to poles in 
the lower-half of the complex-frequency plane, i.e., .ωm → ω

(r)
m − iω

(i)
m , where 

.ω
(i)
m > 0. Hence, the modal fields grow exponentially, .∼ eω

(i)
m r/c, such that any 

integrals of the form .
∫

E2 or .
∫ |E|2 diverge. There are a few resolutions to this issue 

(cf. Sec. 4 of Ref. [71]). Perhaps the simplest is to use computational perfectly 
matched layers (PMLs) to confine the fields to a finite region. Then, for any 
accurate discretization of theMaxwell operator, one is simply left with a finite-sized, 
non-Hermitian matrix, whose eigenvectors will generically be orthonormalizable 
under the unconjugated inner product. (Exceptions to this occur at aptly named 
exceptional points, where modes coalesce, and one needs Jordan vectors to complete 
the basis [72, 73].) Orthogonalization of these modes requires the same modification 
of the inner product discussed above (even without material loss [27], as radiation 
is a loss mechanism). Moreover, there is one further difficulty: sometimes important 
contributions to energy expression can come from fields that primarily reside in the 
PML region. One can think of this as a condition for a complete basis. It is difficult 
to attribute physical intuition or meaning to such contributions. 

In Sect. 2.4.4, where we develop bounds for mode volume, we will only deal with 
cases of lossless dielectric materials, we assume the quality factors are sufficiently 
high that the system is approximately closed, and we assume isolated resonances. 
This is the limit in which the mode volume as defined by Eq. (2.22) is exactly 
the quantity that enters the LDOS expression of Eq. (2.3), which is typically the 
underlying goal of minimizing mode volume in the first place. In scenarios where 
one must use quasinormal modes, it is probably better to eschew them altogether (if 
one wants a bound) and to instead work directly with the scattering quantity (e.g., 
LDOS) of interest.
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2.3 Analytical and Computational Bound Approaches 

Across many areas of science and technology, “fundamental limits” or “bounds” 
play an important role in technological selection, theoretical understanding, and 
optimal design. Examples abound: 

• The Shockley–Queisser limits for solar-cell energy conversion efficiency. Orig-
inally developed for single-cell, all-angle solar absorption and energy conver-
sion [74], the basic framework they developed identifies two required loss 
mechanisms in any solar cell: radiation back to the sun (at the open circuit 
condition [75]), and thermalization losses in the establishment of quasi-Fermi 
levels in each band. Almost any proposed solar-energy-conversion technique 
must be put through a Shockley–Queisser analysis to earn serious consideration 
as a technology. 

• The Yablonovitch .4n2 limit, for the maximum broadband, all-angle absorption 
enhancement in any optically thick material [76]. The factor . 4n2, for a refractive 
index n, arises from the density-of-states enhancement in a high-index material, 
a 2X enhancement from mirrors on the rear surface, and a 2X enhancement from 
the reorientation of mostly vertical rays into random angles. 

• The Wheeler–Chu limit to antenna quality factor, Q [77, 78]. It is difficult 
for a subwavelength antenna (such as a cell phone antenna) to operate over 
a wide bandwidth, and the Wheeler–Chu (sometimes Harrington is also given 
credit [79]) limit imposes a bound on the maximum operational bandwidth. Most 
state-of-the-art antenna designs operate very close to the Wheeler–Chu limit [80]. 

• The Bergman–Milton bounds on the effective properties of a composite 
material [81–86]. 

• The Abbe diffraction limit on the maximum focusing of an optical beam. This 
limit can be circumvented in the near field [87, 88], or even in the far field if one 
is willing to tolerate side lobes [89–95]. 

• The Shannon bounds [96], a foundational idea in information theory [97]. 

Many of these examples involve electromagnetism, but typically only for noninter-
acting waves and simplified physical regimes. The Yablonovitch .4n2 limit applies in 
geometric (ray) optics, the Wheeler–Chu limit only arises in highly subwavelength 
structures, and the diffraction limit applies only to free-space (or homogeneous-
medium) propagation. Is it possible to create an analogous theoretical framework 
for the full Maxwell equations, identifying fundamental spectral response bounds 
while accounting for the exceptional points [98, 99], speckle patterns [100], bound 
states in the continuum [101], and other exotic phenomena permitted by the wave 
equation? A flurry of work over the past decade suggests that in many scenarios, the 
answer should be “yes.” In the following subsections, we outline the key new ideas 
that have been developed.



2 Fundamental Limits to Near-Field Optical Response 39

2.3.1 Global Conservation Laws 

One approach particularly well-suited to formulating bounds is to replace the 
complexity of the full Maxwell-equation design constraints with a single constraint 
that encodes some type of conservation law. The Yablonovitch limit, discussed in 
the previous section, offers a powerful example: to identify maximum absorption 
enhancement in a geometric-optics setting, one can replace the complexity of 
ray-tracing dynamics with a single density-of-states constraint. Unfortunately, 
one cannot extend such density-of-states arguments to full-Maxwell and near-
field settings, but other types of “conservation laws” can be identified. A global 
conservation law that has been particularly fruitful for nanophotonics is the 
optical theorem. The optical theorem [102–104] is a statement of global power 
conservation: the total power extinguished from an incident beam by a scattering 
body (or bodies) equals the sum of the powers scattered and absorbed by that body. 
Writing the extinguished, scattered, and absorbed powers as . Pext, .Pscat, and .Pabs, 
respectively, the optical theorem can be expressed as 

.Pext = Pscat + Pabs. (2.23) 

Conventionally, the optical theorem is specified in terms of the far-field scattering 
amplitudes of a scattering body [102], in which case the extinction is shown to 
be directly proportional to the imaginary part of the forward-scattering amplitude. 
This expression can be interpreted as a mathematical statement of the physical 
intuition that the total power taken from an incident beam can be detected in the 
phase and amplitude of its shadow. The analysis does not have to be done in the 
far field; another common version is to relate the extinguished-, scattered-, and 
absorbed-power fluxes via surface integrals of the relevant Poynting fluxes [103]. 
Still one more version of the optical theorem, and the one that turns out to 
be most useful for wide-ranging bound applications, is to use the divergence 
theorem to relate the surface fluxes to the fields within the volume of the scatterer 
and write all powers in terms of the polarization currents and fields induced in 
those scatterers [104]. As we briefly alluded to in the discussion of free-electron 
radiation in Sect. 2.2.2, the work done by a field . E on a polarization field . P in 
a volume V is given by .

(
ω
2

)
Im

∫
V

E∗ · P = (
ω
2

) ∫
V

P∗ [Imχ/|χ |2]P, where 
. χ is the material susceptibility. (We assume throughout scalar, electric material 
susceptibilities . χ . The generalizations to magnetic, anisotropic, and bianisotropic 
materials are straightforward in every case.) Extinction is the work done by the 
incident field on the induced polarization field, scattered power is the work done by 
that polarization field on the scattered fields .Escat, and absorbed power is the work 
done by the total field on the polarization field. Hence, the optical theorem reads:
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. Im
∫

V

E∗
inc(x) · P(x) dx = Im

∫

V

∫

V

P∗(x) · G0(x, x′)P(x′) dx dx′

+
∫

V

P∗(x) · Imχ(x)

|χ(x)|2 P(x) dx, (2.24) 

where we have substituted .Escat(x) = ∫
V
G0(x, x′)P(x′) dx′ for the scattered field 

and dropped the constant factor .(ω/2) preceding every integral. Equation (2.24) 
relates extinction on the left-hand side to the sum of scattered and absorbed powers 
on the right-hand side. For intuition and compactness, it is helpful to rewrite 
equations like Eq. (2.24) in a matrix/vector form. We can assume any arbitrarily 
high-resolution discretization in which .P(x) becomes a vector . p, the integral 
operator .

∫
V
G(x, x′) dx′ becomes a matrix . G0, and integrals of the conjugate of 

a field .a(x) with another .b(x) are replaced with vector inner products . a†b. It is  
also helpful to define a material parameter .ξ(x) = −1/χ(x), and a corresponding 
(diagonal) matrix .ξ = −χ−1. With these notational changes, Eq. (2.24) can be 
rewritten as 

. Im
(

e†incp
)

= p† [ImG0 + Im ξ ]p. (2.25) 

This is the vectorized version of the optical theorem, and it illuminates some of the 
mathematical structure embedded in this particular version of power conservation. 
The left-hand side is a linear function of the polarization field . p, while the right-
hand side is a quadratic function. Moreover, in passive systems, the absorbed and 
scattered powers are nonnegative quantities. This nonnegativity is embedded in 
the matrices (operators) .ImG0 and .Im ξ , both of which are positive semidefinite 
(denoted by “. ≥ 0”) in passive systems: 

. ImG0 ≥ 0, . (2.26) 

Im ξ ≥ 0. (2.27) 

The positive semidefinite nature of these matrices implies that the right-hand side of 
Eq. (2.25) is a convex quadratic functional of . p. Hence, Eq. (2.25) can be interpreted 
as an ellipsoid (as opposed to a hyperboloid) in the high-dimensional space occupied 
by . p. 

A key feature of Eq. (2.25), and the conservation laws to follow, is that it is 
domain oblivious [105]. Suppose we enforce that constraint on a high-symmetry 
domain, such as a sphere or half-space, where the operator . G0 might be easy to 
construct. Of course, enforcing Eq. (2.25) will enforce power conservation on the 
sphere itself. But it also enforces power conservation on all sub-domains of the 
sphere. This is not obvious—the operator . G0 is different for every choice of domain 
and range, and once we have chosen a sphere for both, it seems that we are stuck 
with only the sphere domain. The key, however, is the appearance of . p in each 
term of Eq. (2.25), and twice on the right-hand side. To enforce Eq. (2.25) on a
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smaller sub-domain, instead of changing the domain and range of the operator, we 
can instead enforce the polarization . p to be zero at each point outside the sub-
domain but inside the enclosing domain. On the right-hand side, this effectively 
changes both the domain and range of . G0, while on the left-hand side, it nulls any 
extinction contribution from outside the sub-domain. Hence, the conservation law 
of Eq. (2.25), and all of the volume-integral-based conservation laws to follow, is 
domain oblivious. 

Power conservation via the optical theorem has led to a surprisingly wide array 
of bounds and fundamental limits in electromagnetic systems. The key idea is to 
drop the full Maxwell-equation constraint that is implicit in any design problem 
and replace it with only the power-conservation expression of Eq. (2.25). Even 
with just this single constraint, surprisingly good bounds can be attained. As 
an example, consider systems where absorptive losses are more important than 
radiation/scattering losses. In such systems, we can drop the .ImG0 term in the 
optical theorem of Eq. (2.25) and use its positivity to write a constraint that absorbed 
power, be less than or equal to extinction: 

.p† (Im ξ) p ≤ Im
(

e†incp
)

. (2.28) 

This constraint implies a bound on the strength of the polarization field, because 
the left-hand-side term is quadratic (and positive-definite) in . p, while the right-hand 
side is linear in . p. A few steps of variational calculus [106] can identify the largest 
polarization-field strength that can be induced in a scatterer: 

.‖p‖2 = p†p =
∫

V

|P(x)|2 dx ≤ ‖einc‖2
Im ξ

= |χ |2
Imχ

∫

V

|Einc(x)|2 dx. (2.29) 

We have a first bound: in a lossy material, wherein .Imχ > 0, there is a bound on 
the largest polarization currents that can be induced in a scatterer, based only on 
the material properties and the energy of the incident wave in the scattering region. 
Polarization currents beyond this strength would have absorbed powers larger than 
their extinction, implying an unphysical negative scattered power. 

Beyond the strength of the polarization field itself, one can use similar 
variational-calculus arguments to identify bounds on wide-ranging quantities: 
extinction, absorption, and scattering; in bulk materials [106], 2D materials [107], 
and lossy environments [108, 109]; high-radiative-efficiency scatterers [110]; and 
even near-field quantities such as local density of states [46, 106], near-field 
radiative heat transfer [107, 111], and Smith–Purcell radiation [112]. As a canonical 
example, let us consider the extinction, absorption, and scattering cross sections of 
a scattering body with volume V , susceptibility . χ , and a plane-wave incident field. 
Cross sections .σext,abs,scat are the relevant powers divided by the intensity of the 
incident wave; the corresponding bounds are
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.
σabs,scat,ext

V
≤ βω

c

|χ |2
Imχ

βabs,ext = 1, βscat = 1

4
. (2.30) 

Per-volume cross sections are bounded above by the frequency of the incoming 
waves and the material susceptibilities. Plasmonic nanoparticles can approach these 
bounds [106, 107, 113]. 

One subtlety that arises in the near field (whose bounds are discussed in depth in 
Sect. 2.4) is which conservation laws to use. The absorption- and extinction-based 
constraint of Eq. (2.28) may not be ideal for local density of states, for example, as 
the power radiated by a dipole is not exactly the same as the power extinguished by 
a nearby scatterer. (There is a separate pathway for the dipole to radiate directly to 
the far field, and this radiation can destructively/constructively interfere with waves 
scattered by the scatterer.) The optical theorem of Eq. (2.25) arises from equating 
fluxes through a surface surrounding the scatterer. Instead, in the near field, one 
can draw a surface around the dipolar source itself. Then one can identify new 
conservation laws, which now relate the total power radiated by the dipole (the 
LDOS) to the sum of power absorbed in the scatterer and power radiated to the 
far field. 

In some systems, radiation losses are the limiting factor rather than absorp-
tion losses. Prominent examples include metals at low frequencies and low-loss 
dielectrics. In these systems, the key component of the optical theorem of Eq. (2.25) 
is the radiation-loss term with .ImG0, not the absorption-loss term. Of course, 
absorption must be positive, so we can drop it and replace the optical theorem with 
a second inequality version: 

.p† (ImG0) p ≤ Im
(

e†incp
)

. (2.31) 

Although the .ImG0 matrix may appear daunting, we typically use high-symmetry 
volumes for our designable domains, and we can use analytical or semi-analytical 
forms of .ImG0 in those domains. (Such usage does not restrict the validity of the 
bound to only the high-symmetry domain; as discussed above, this expression is 
domain oblivious.) One common high-symmetry domain is a sphere, in which case 
.ImG0 can be written in a basis of vector spherical waves [114–116]. Application 
of this approach to the question of maximum cross sections yields different bounds 
from the ones of Eq. (2.30). One must limit the number of spherical waves that 
can contribute to the scattering process; allowing only the first N electric multipole 
leads to maximum cross sections proportional to the square of the wavelength, . λ: 

.σabs,scat,ext ≤ βλ2

π

(
N2 + 2N

)
βscat,ext = 1, βabs = 1

4
, (2.32) 

with double the value if the magnetic vector spherical waves can be equally excited. 
Note the different values of . β for absorption and scattering in the absorption-limited 
case of Eq. (2.30) versus the radiation-limited case of Eq. (2.32). The different coef-



2 Fundamental Limits to Near-Field Optical Response 43

ficients arise because of the different conditions under which maximum extinction 
occurs. In an absorption-dominated system, arbitrarily small scattering is possible 
(in principle), such that the maximum for extinction and absorption coincide, 
while the scattered-power maximum requires a reduction in absorption relative to 
extinction and a .1/4 coefficient to account for the matching that must occur. The 
opposite occurs in scattering-limited systems, where absorption can be arbitrarily 
small (in principle), the maximum for extinction and scattering coincide, and an 
extra factor of .1/4 is introduced when absorption is to be maximized. The bound of 
Eq. (2.32) was originally derived for antenna applications or spherically symmetry 
scatterers via long and/or restrictive arguments [117–121]; the single conservation 
law of Eq. (2.31) is sufficient to derive Eq. (2.32) in quite general settings [122, 123]. 
(An interesting precursor to the global-conservation-law approach is Ref. [124], 
which identifies metrics that intrinsically have bounded optima over polarization 
currents, even without any constraints.) 

Of course, in some settings, both absorption and radiation losses will be 
important to capture what is possible, and the bounds of Eqs. (2.30, 2.32) may not be 
sufficient. It is possible to capture both loss mechanisms in a single bound by using 
the entirety of the optical theorem, Eq. (2.25), without dropping either term. This 
was first recognized in Refs. [116, 125, 126]. Ref. [116] used this approach to derive 
bounds on the thinnest possible perfect absorber. (Or, conversely, the maximum 
absorption of an arbitrarily patterned thin film with a given maximum thickness.) 
Cross-sectional bounds given in Ref. [116, 125, 126] are generalizations of the 
two bounds listed above, Eqs. (2.30,2.32), containing each as separate asymptotic 
limits. At normal incidence, one can derive a simple transcendental equation for the 
minimum thickness, .hmin, of a perfect absorber with material parameter .ξ = −1/χ : 

.hmin =
(
2λ

π

)
Im ξ(ω)

1 − sinc2 (ωhmin/c)
. (2.33) 

This approach has been successfully applied to the identification of the minimum 
thickness of a metasurface reflector [127]. 

Finally, at the global-conservation level, one can go one step further, as first 
recognized in Refs. [125, 126]. The optical theorem of Eq. (2.25) represents the 
conservation of real power across the volume of a scatterer, which can be understood 
as the conservation of the real part of the Poynting vector through any bounding 
surface. Additionally, the imaginary part of the Poynting vector corresponds to 
what is known as reactive power [103]. The complex-valued version of the optical 
theorem is essentially the same as Eq. (2.25) but without the imaginary part in any 
of the terms; a careful analysis leads to the generalized optical theorem: 

. − p†einc = p† [G0 + ξ ]p. (2.34) 

The real and imaginary parts of Eq. (2.34) now  offer  two global conservation 
laws that must be satisfied in any scatterer. The real-power conservation law 
accounts for absorption- and radiation-loss pathways, while the reactive-power
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conservation law accounts for resonance conditions in real materials. The latter has 
been shown to be beneficial for tightening bounds in plasmonic materials that are 
relatively large (wavelength-scale sizes are quite large for plasmonic resonators) 
or which have very large negative real susceptibilities and/or very small imaginary 
susceptibilities [126]. This approach has been applied to bounds in cloaks [128] 
and focusing efficiency [129]. Equation (2.34) can be derived in one step from 
the volume-integral equation [130] (or Lippmann–Schwinger equation), which in 
this notation reads .[G0 + ξ ]p = −einc, simply by taking the inner product of that 
equation with . p. 

In this section, we have seen that the optical theorem, written over the volume 
polarization fields induced in a scatterer, offers a single (or two) global conservation 
laws that can be used to identify bounds in wide-ranging applications. In Sect. 2.3.3, 
we show that it is also a starting point for generating an infinite number of “local” 
conservation laws. First, however, we will explore an approach that is closely related 
to global conservation laws: so-called “channel” bounds. 

2.3.2 Channel Bounds 

In this section, we explore another technique for identifying bounds to what is 
possible: decomposing power transfer into a set of independent or orthogonal 
power-carrying “channels.” Then the upper limits distill to the maximum power (or 
alternative objective) per channel multiplied by the number of possible channels. 

A particularly elegant formulation of channels was proposed by D. A. B. Miller 
and colleagues in the early 2000s [131–134]. Consider a transmitter region that 
wants to communicate (i.e., send information/energy) to a receiver region, and a 
vacuum (or background) Green’s function operator . G0 comprising the fields in the 
receiver from sources in the transmitter. How many communication channels are 
possible? There is a simple, rigorous mathematical answer to this question: if one 
decomposes the . G0 operator via a singular value decomposition (SVD) [135], 

.G0 = USV
†, (2.35) 

then each pair of singular vectors forms an independent channel. The singular value 
decomposition encodes orthogonality and normalization. For example, the first right 
singular value, which we can call . v1, radiates only to the first left singular vector . u1
in the receiver region, and the strength of this connection is given exactly by the 
first singular value, which we can call . s1. This triplet .(v1, u1, s1) mathematically 
define a communication channel, as are all the pairs in the SVD. There cannot be 
an infinite number of such channels with arbitrarily large strengths, as the channel 
strengths obey a simple sum rule related to the integral of the Green’s function over 
the transmitter and receiver volumes:
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. 
∑

i

|si |2 = Tr
(
S
†
S

)
= Tr

(
G

†
0G0

)
=
∫

VT

∫

VR

‖G0(xT , xS)‖2 dxT dxR.

(2.36) 

One can define more granular bounds as well: for any transmitter/receiver regions 
enclosed within high-symmetry bounding domains, one can identify upper limits for 
each individual singular value [136]. The singular values must decay exponentially 
in two-dimensional systems, whereas in three dimensions, their decay can be sub-
exponential. This SVD-based decomposition of Eq. (2.35) implicitly uses a field-
energy normalization; one can alternatively use power-transfer normalizations and 
arrive at related bounds for the communication strength between two volumes [137– 
139]. Each of these is a powerful approach for free-space communication systems 
such as MIMO [140, 141]. More generally, they capture a general truth about free-
space propagation: it can always be decomposed into orthogonal, power-carrying 
channels. 

In the near field, however, evanescent waves do not offer an equivalent set of 
power-carrying channels. Evanescent waves obey different mathematical orthonor-
malization rules, which are consistent with the following fact: evanescent waves 
decaying (or growing) in one direction cannot carry power and power can be 
transmitted only in the presence of oppositely directed evanescent waves [142]. A 
prototypical example: a single interface can only exhibit total internal reflection 
alongside evanescent-wave excitation, whereas the introduction of second interface, 
and counter-propagating evanescent waves, can lead to the tunneling of power 
through a “barrier.” 

In lieu of the general SVD approach, in high-symmetry scenarios, it is often 
possible to decompose power transfer in a high-symmetry basis. For example, a 
spherically symmetric scatterer preserves the quantum numbers of incoming vector 
spherical waves and cannot scatter into waves of different quantum numbers, which 
implies that each vector spherical wave comprises a “channel” for incoming and 
outgoing radiation. Similarly, in planar systems, the in-plane (parallel) wavevector 
. k is a conserved quantity, in which case one can isolate the scattering process into 
each .k-dependent propagating and evanescent plane wave. One cannot define free-
space evanescent-wave channels, per the orthonormalization discussion above, but a 
more complete analysis can lead to .k-dependent transfer coefficients that are readily 
interpretable as a channel-based power decomposition. We discuss the successful 
application of these ideas to near-field radiative heat transfer in Sect. 2.4.1.4. A  
word of caution is important, however: the assumption of a high-symmetry structure 
dramatically limits the set of structures to which such bounds apply, and in many 
scenarios, it has been found that the symmetry-independent approaches of global 
conservation laws (previous section) and local conservation laws (next section) yield 
both tighter and more general bounds.
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2.3.3 Local Conservation Laws 

In the global-conservation-law section of Sect. 2.3.1, we discussed that one or two 
conservation-of-power constraints are already sufficient for bounds in many sce-
narios of interest. Of course, one or two constraints cannot capture every objective 
of interest: if, for example, one wanted to know the largest average response over 
multiple incident fields, certainly more constraints are needed. Thankfully, it turns 
out that there is a systematic way to generate a large number of conservation-law 
constraints for any nanophotonic design problem of interest. 

The key is to identify local conservation laws that apply at every point within 
the scatterer [105, 115]. These conservation laws can be “built” from a volume-
integral formulation of the underlying governing dynamics, but we will use a more 
intuitive approach to develop them. The “generalized optical theorem” is written in 
Eq. (2.34) in vector/matrix notation; the equivalent integral expression is 

. 

∫

V

∫

V

P∗(x)G0(x, x′)P(x′) dx dx′ +
∫

V

P∗(x)ξ(x)P(x) dx = −
∫

V

P∗(x)Einc(x) dx.

(2.37) 

To formulate local conservation laws, we simply recognize the following: for the 
first integral over the entire scatterer V that appears in every term, we can replace 
V with . Vx, where . Vx is an infinitesimal volume centered around any point . x within 
the scatterer. With this replacement, the dependence on . x of each integrand becomes 
approximately constant (exactly constant in the zero-volume limit), and the integral 
simplifies to just multiplication by the volume . Vx, which appears in every term and 
can be cancelled, leaving 

.

∫

V

P∗(x)G0(x, x′)P(x′) dx′ + P∗(x)ξ(x)P(x) = −P∗(x)Einc(x). (2.38) 

More rigorous justifications are given in Refs. [105, 115] and can proceed either 
from the volume-integral formulation or, with equal validity, by converting the 
volume integrals around . Vx into surface integrals (via the divergence theorem), in 
which case Eq. (2.38) is interpreted simply as flux conservation through the surface 
of . Vx. To convert Eq. (2.38) to the more compact vector notation, we denote new 
matrices . Di as diagonal matrices of all zeros except a single 1 at diagonal entry i, in  
which case Eq. (2.38) can be written as 

.p†
Di (G0 + ξ) p = −e†incDix, (2.39) 

which must hold for all spatial locations’ index by i. Equation (2.39) offers an  
infinite set of local conservation laws that must be satisfied for any (linear) scattering 
body. Moreover, just as for the global conservation laws, Eq. (2.39) is domain 
oblivious. Hence, if the constraints of Eq. (2.39) lead to a bound, then that bound 
will apply to all sub-domains (or “patterns”) contained therein.
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There is a systematic procedure that one can follow for identifying funda-
mental limits using the constraints of Eq. (2.39). If one discards the Maxwell 
differential (or integral) equations, and only imposes the constraints of Eq. (2.39), 
the resulting optimization problem has the form of a quadratically constrained 
quadratic program, or  QCQP. QCQPs arise across many areas of science and 
engineering [143–148], and there are many mathematical approaches for solving 
them. One in particular is useful for identifying bounds: one can relax a QCQP 
to a semidefinite program (SDP) in a higher-dimensional space [145, 149], 
which can be solved for its global optimum by standard algorithms in polynomial 
time [150, 151]. The solution of the SDP is guaranteed to be a bound, or fundamental 
limit, on the solution of the problem of interest. (The semidefinite program can also 
be regarded as the “dual” [151] of the dual of the QCQP [152], which is another 
way to see that it leads to bounds.) 

Thus, local conservation laws lead to a systematic procedure for identifying 
bounds, or fundamental limits, to electromagnetic quantities of interest. One 
replaces the governing Maxwell equations with the domain-oblivious conservation-
law constraints of Eq. (2.39), forms a semidefinite program from the objective 
and constraints, and solves the SDP to find a bound. To avoid the computational 
complexity of using all of the constraints, one can iteratively select only the “max-
imally violated” constraints, for rapid convergence to the bound of interest [105]. 
A mathematically oriented review of bounds related to Eq. (2.39) is given  in  
Ref. [153]. Extensions of various types are given in Ref. [154] (multi-functionality), 
Ref. [155] (quantum optimal control), Ref. [156] (efficiency metrics), and Ref. [157] 
(other physical equations). 

2.3.4 Sum Rules 

Whereas the three previous sections primarily emphasized fundamental limits 
across spatial degrees of freedom, at a single frequency, sum rules center around 
spectral degrees of freedom and constraints related to bandwidth. Sum rules are 
a prime example of applied complex analysis. Most often, they are taught and 
discussed in the context of material susceptibilities, so we will start there, before 
focusing on our key interest, scattering problems. In the Appendix Sect. 2.6, we  
provide a short review of key results from complex analysis, and the intuition behind 
their derivations, culminating in the Cauchy residue theorem that is used for all sum 
rules. Cauchy’s residue theorem, for our purposes, can be distilled to the following 
statement. Consider a function .f (z) that is analytic (has no poles) in some domain 
D in the complex z plane. (Below, the analytic variable z will be the frequency . ω.) 
Then the function .f (z)/(z−z0) has a simple pole at . z0, for . z0 in D, and any integral 
of this function along a closed contour in D containing . z0 simplifies to the value of 
the function at the pole:
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.

∮

γ

f (z)

z − z0
= 2πif (z0), (2.40) 

where .f (z0) is the “residue” of the function .f (z)/(z−z0). Now let us put Cauchy’s 
residue theorem to use. 

Consider a material susceptibility . χ that relates an electric field . E to an induced 
polarization field . P. Typically, we might directly consider the frequency-domain 
relationship of these variables: 

.P(ω) = χ(ω)E(ω), (2.41) 

where we are suppressing spatial dependencies in these expressions for simplic-
ity. (All of the position dependencies are straightforward.) This multiplicative 
frequency-domain relation arises from a convolutional time-domain relationship: 
the polarization field at a given field is related to the electric field at all other times 
convolved with the susceptibility function (as a function of time): 

.P(t) =
∫

χ(t − t ′)E(t ′) dt ′. (2.42) 

(We do not use different variables for the time- and frequency-domain definitions; 
the domain should be clear in each context.) Causality is the formal specification 
that cause precedes effect. Material susceptibilities are causal: the polarization field 
cannot arise before the electric field has arrived, which means that for some origin 
of time, the susceptibility function is identically zero at all preceding times: 

.χ(t − t ′) = 0 for t < t ′. (2.43) 

In the usual Fourier-transform relation between the time- and frequency-domain 
susceptibility functions, then, one can set the lower limit of the time-domain integral 
to be 0: 

.χ(ω) = 1

2π

∫ ∞

−∞
χ(t)eiωt dt = 1

2π

∫ ∞

0
χ(t)eiωt dt. (2.44) 

Setting the lower limit of the integral to 0 has an important ramification. Let us 
assume the susceptibility takes a finite value for all real frequencies. (Metals are an 
exception, with divergent susceptibilities at zero frequencies, but known modifica-
tions to the rules below can be developed to account for this singularity [158, 159].) 
This implies that the integral of Eq. (2.44) converges to the correct finite value at 
each frequency. Now let us consider a complex-valued frequency .ω = ω0 + iΔω. 
If we insert this frequency into Eq. (2.44), we find 

.χ(ω0 + iΔω) = 1

2π

∫ ∞

0
χ(t)eiω0t e−Δωt dt, (2.45)
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which is equivalent to the integral of Eq. (2.44), except now that there is the 
additional exponential decay term .e−Δωt in the integrand. This exponential decay 
term can only aid in convergence, and under appropriate technical assumptions (e.g., 
Titchmarsh’s theorem [160]), one can prove the intuitive idea that Eq. (2.45) cannot 
diverge for any . Δω. This implies that the material susceptibility .χ(ω) is analytic 
in the upper-half of the complex-frequency plane. (Conversely, frequencies in the 
lower half would have the exponentially diverging term .eΔωt in their integrands, 
leading to divergences at certain frequencies, which is where the system resonances 
are located.) Hence, we can use Cauchy’s integral theorem of Eq. (2.40) with . χ(ω)

as the analytic function in the numerator of the integrand. The typical usage of the 
integral theorem is to select a pole on the real axis (or, technically, in the limit 
of approaching the real axis from above), and to use a contour C that follows the 
real line, includes a semicircular deformation around . ω′, and then closes along a 
semicircle approaching infinity in the upper-half plane. This contour actually does 
not enclose any poles, instead “side-stepping” the real-axis pole, at a frequency we 
denote by . ω. Hence, we have 

.

∮

C

χ(ω′)
ω′ − ω

dω′ = 0. (2.46) 

The integral over C can be broken into three components: the principal-valued 
integral along the real axis from negative infinity to infinity (skipping . ω′), the 
semicircular arc going into the upper-half plane, and the semicircular arc rotating 
clockwise around . ω. The second of these terms is zero (for sufficiently rapid decay 
of .χ(ω)), while the third term is simply .−iπχ(ω) (half of the typical Cauchy 
residue term since it is half of a circle, with a negative sign for the clockwise 
rotation). Equating the negative of the third term to the first, we have 

.iπχ(ω) =
∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′. (2.47) 

We can take the imaginary part of both sides, and use the symmetry of . χ around the 
origin, .χ(−ω) = χ∗(ω), to arrive at one of the Kramers–Kronig (KK) relations 
for a material susceptibility: 

.Reχ(ω) = 2

π

∫ ∞

0

ω′ Imχ(ω′)
(ω′)2 − ω2 dω′. (2.48) 

The counterpart KK relation relates the imaginary part of .χ(ω) to an integral 
involving the real part. These KK relations are the foundations of sum rules. There 
are two special pole frequencies . ω at which we may have additional information 
about the material response: infinity frequency and zero frequency (statics). In 
the limit of infinitely large frequencies, all materials become transparent, with a 
susceptibility that must scale as
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.χ(ω) → −ω2
p

ω2 as ω → ∞, (2.49) 

where . ωp is a constant proportional to the total electron density of the material [158, 
159]. Inserting this asymptotic limit into the KK relation of Eq. (2.48), we find our 
first example of a sum rule: 

.

∫ ∞

0
ω Imχ(ω) dω = πω2

p

2
. (2.50) 

Equation (2.50) is known as either the TRK sum rule or the f sum rule [158, 159]. 
It relates the weighted integral of the imaginary part of the susceptibility to simple 
constants multiplied by the electron density of the material of interest. The quantity 
.ω Imχ(ω) is proportional to the oscillator strengths in single-electron susceptibility 
models [161]. Alternatively, in the low-frequency limit, one may know the static 
refractive index . n0 of a given material; inserting .ω = 0 in the KK relation of 
Eq. (2.48) gives the low-frequency sum rule: 

.

∫ ∞

0

Imχ(ω)

ω
dω = π

2

(
n20 − 1

)
. (2.51) 

The two sum rules of Eqs. (2.50,2.51) are well-known material sum rules that are 
useful for spectroscopy [158, 159] as well as for bounds on material properties [162– 
164]. We have repeated their well-known derivations to familiarize the reader with 
the machinery of KK relations and sum rules, which we apply next to scattering 
properties. 

Just as the origin for material sum rules was recognition of material susceptibility 
as a causal (linear) response function, for scattering sum rules, we want to start 
by recognizing that the electromagnetic field . E generated by a source (presumably 
current) is also a causal linear response function: . E cannot be nonzero before the 
current . J is nonzero. Hence, the electric field at all times before an origin must be 
zero, which again leads to analyticity in the upper-half of the complex-frequency 
plane. Yet we do not want KK relations for the electric field at specific points in 
space; we want KK relations (and sum rules) for relevant power quantities. Typical 
expressions of interest might be the field intensity, .|E(x, ω)|2, or the Poynting 
flux .(1/2)Re

[
E∗(x, ω) × H(x, ω)

]
, at a point . x, but  neither of these quantities 

is analytic in the upper-half plane. The problematic term in each case is .E∗(ω). 
Analyticity is not preserved under complex conjugation, and indeed by symmetry, 
we know that .E∗(ω) = E(−ω) on the real line; if we try to continue . ω into the 
upper-half plane, the .−ω argument moves into the lower-half plane, where the 
resonances reside. Hence, .E∗(ω) can have poles, and the corresponding power terms 
do not have simple KK relations or sum rules. 

We are rescued, again, by the optical theorem. Whereas absorbed and scattered 
powers always involve conjugated total fields, extinction, by virtue of the optical 
theorem, takes a different form (Eq. (2.7)), which is proportional to the overlap
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integral of the conjugate of the incident field with the induced polarization field, 
.
∫
V

E∗
inc · P. Many common incident fields, such as plane waves of the form 

.eiωx/c, are analytic everywhere in the complex plane, and their conjugates can be 
analytically continued. The polarization field is the product of the analytic material 
susceptibility with the analytic electric field, and thus is itself analytic. Hence, 
extinction expressions contain a term that will obey KK relations and sum rules, 
which we denote .s(ω): 

.Pext(ω) = ω

2
Im

∫

V

E∗
inc(x, ω) · P(x, ω) dx

︸ ︷︷ ︸
s(ω)

. (2.52) 

By the arguments laid out above, the quantity .s(ω) is analytic in the upper-half 
plane. It satisfies the other required assumptions as well (e.g., sufficient decay at 
infinity) for incident fields such as plane waves; we can immediately write a KK 
relation for it: 

.Re s(ω) = 2

π

∫ ∞

0

ω′ Im s(ω′)
(ω′)2 − ω2 dω′. (2.53) 

Notice that the term in the numerator of the integrand is exactly proportional to 
extinction; hence, sum rules for the imaginary part of .s(ω) (by analogy with the 
sum rules for .Imχ ) will necessarily be sum rules for extinction. Again paralleling 
the susceptibility analysis, we can take the limit as .ω → ∞, in which case 

. s(ω) =
∫

E∗
inc(x, ω) · P(x, ω) dx

→ −ω2
p

ω2

∫

V

|Einc(x, ω)|2 dx

= −ω2
p

ω2
|E0|2 V, (2.54) 

where . E0 is the (constant) vector amplitude of the plane wave and V is the volume of 
the scatterer. Evaluating the KK relation for .s(ω), Eq.  (2.53), in the high-frequency 
limit gives a sum rule for the imaginary part of .s(ω): 

.

∫ ∞

0
ω Im s(ω) dω = πω2

p

2
|E0|2 V, (2.55) 

which in turn implies a sum rule for extinction (via Eq. (2.52)): 

.

∫ ∞

0
Pext(ω) dω = πω2

p

4
|E0|2 V. (2.56)
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Equation (2.56) dictates that the total integrated extinction of any scattering body is 
fixed by the amplitude of the incident plane wave and the total number of electrons 
in the scatterer (from the product of . ω2

p with V ) and is otherwise independent of the 
shape, resonance profile, and any other characteristics of the scattering body. 

Just as for a material susceptibility, one can also derive a sum rule for .Pext by 
setting .ω = 0 in the KK relation for .s(ω), Eq.  (2.53). The key low-frequency 
information we can utilize is that the induced dipole moment of the scatterer is 
related to the incident field via a polarizability tensor . α. Following a few algebraic 
steps [165] paralleling the low-frequency material sum rule, one similarly finds a 
sum rule for the integral of .Pext(ω)/ω2. The  term .(1/ω2) dω is exactly proportional 
to . dλ, where .λ = 2πc/ω is the wavelength, so this sum rule is often written as a 
sum rule over wavelength: 

.

∫ ∞

0
Pext(ω) dλ = π2E0 · αE0. (2.57) 

There is an additional magnetic polarizability term in materials with a nonzero 
magnetostatic response [165]. Interestingly, Eq. (2.57) has different dependencies 
than Eq. (2.56): the polarizability has a weak dependence on material, but a strong 
dependence on shape. The low-frequency sum rule implies that scattering bodies 
with the same size and shape, but made of different materials, can have nearly 
identical wavelength-integrated extinctions. Moreover, electrostatic polarizabilities 
obey “domain monotonicity” bounds that dictate that the quantity .E0 · αE0 must 
increase as the scatterer domain increases in size, such that one can bound integrated 
extinction via high-symmetry enclosures for which the right-hand side of Eq. (2.57) 
often takes a simplified analytical form. Taken together, the high- and low-frequency 
sum rules of Eqs. (2.56, 2.57) comprise strong constraints on the possible scattering 
lineshapes of arbitrary scatterers. 

Equations (2.56, 2.57) are classical sum rules with a long history. The high-
frequency sum rule, Eq. (2.56), was known at least as early as 1963 [166], when 
the connection to material-susceptibility sum rules was first made. A specialized 
version of the low-frequency sum rule, Eq. (2.57), was first proposed by Purcell in 
1969 [167], in order to bound the minimum volume occupied by interstellar dust. It 
was generalized to arbitrary scattering bodies in Ref. [165], where the monotonicity 
bounds (originally developed by Jones [168]) were connected to the low-frequency 
sum rules. For many years, it seemed that plane-wave extinction might be the only 
scattering quantity for which sum rules can be derived. In recent years, however, it 
has been recognized that near-field local density of states has a similar form—it is 
the real or imaginary part of an amplitude, instead of the squared magnitude of an 
amplitude—for which sum rules can also be derived. We describe this sum rule and 
its implications in Sect. 2.4.2.
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2.4 Fundamental Limits in the Near Field 

We have set the stage: we have introduced near-field optics, defined many of the 
response functions of interest, and described tools formulated for electromagnetic-
response bounds. In this section, we describe how these ingredients come together 
for bounds and fundamental limits to near-field response. We identify different 
bounds–and the different techniques required to derive them–based on the frequency 
range of interest: a single frequency (Sect. 2.4.1), all frequencies (Sect. 2.4.2), and 
finite, nonzero bandwidths (Sect. 2.4.3). We leave bounds for mode volume, which 
seemingly requires very different techniques, to the final section of the chapter 
(Sect. 2.4.4). 

2.4.1 Single-Frequency Bounds 

In Sect. 2.3, we described two techniques that can be used to identify single-
frequency bounds to any linear-electromagnetic response function of interest: 
conservation laws and channel decompositions. In this subsection, we summarize 
how one can adapt, specialize, and/or combine those approaches in the near 
field, for spontaneous-emission and CDOS engineering, Smith–Purcell radiation 
enhancements, and spectral NFRHT response. 

2.4.1.1 Spontaneous Emission 

The canonical near-field quantity is LDOS, which as discussed in Sect. 2.2.1 is 
proportional to the spontaneous-emission rate of an electric dipole at a given 
location. In a closed system, the LDOS is a sum of delta functions over the modes of 
the system, in which case the LDOS diverges at the modal frequencies. In an open 
system, however, the modal intuition no longer applies, leading to the more general 
Green’s function expression of Eq. (2.4). This scattering quantity lends itself well 
to the conservation-law-based scattering-response bounds described in Sect. 2.3.3. 

We can repeat here the Green’s function expression for LDOS, which we will 
denote in this section by .ρ(x, ω): 

.ρ(x, ω) = 1

πω
Tr ImG(x, x, ω). (2.58) 

The trace of the Green’s function can be computed with a summation over three 
orthogonal unit vectors . sj , for .j = 1, 2, 3, in which case the trace can be interpreted 
as the incoherent summation of the fields from three dipoles with amplitudes .ε0sj . 
There is an initial impediment to applying the conservation-law framework to this 
expression: it is not written explicitly as a function of the polarization fields, whose 
constraints are critical to meaningful bounds. This impediment is easily hurdled: one
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can decompose the Green’s function into its incident and scattered components. The 
scattered fields are the convolutions of the free-space Green’s function matrix . G0
from the scattering domain to the dipole point; by reciprocity, the overlap of . sj with 
. G0 is the field incident upon the scattering body V . By this line of reasoning, for 
a scalar isotropic medium (the general bianisotropic case is derived in Ref. [106]), 
one can rewrite LDOS as 

.ρ(x, ω) = ρ0(ω) + 1

πω
Im

∑

j

∫

V

Einc,sj · Psj dV, (2.59) 

where .ρ0(ω) is the free-space LDOS (which is position-independent and given 
below Eq. (2.4)), and the . sj subscript encodes the three dipole orientations. Using 
the same discretized vector/matrix notation as we initiated with Eq. (2.25), this 
expression can equivalently be written as 

.ρ(x, ω) = ρ0(ω) + 1

πω
Im

∑

j

eT
inc,sj psj . (2.60) 

Now we see that LDOS is a linear function of the polarization fields induced in the 
scattering body. We want to know the largest possible value of LDOS, of Eq. (2.60), 
subject to the Maxwell equations, but of course the latter constraint contains all 
of the complexity of the design problem. Instead, we drop the Maxwell-equation 
constraint and impose only one of the conservation laws of Sect. 2.3. To start, we  
can impose the conservation law that absorbed power be smaller than extinguished 
power, of Eq. (2.28), which leads to the optimization problem: 

.

max.
psj

1

πω
Im

∑

j

eT
inc,sj psj

s.t. (Im ξ) p†
sj psj ≤ Im

(
e†inc,sj psj

)
.

(2.61) 

Treating each dipole orientation . sj independently, one can find from a Lagrangian 
analysis that the optimal . psj comprises a linear combination of .einc,sj and .e∗

inc,sj
; 

in the near field, where the incident field and its conjugate are nearly identical, and 
the LDOS is dominated by its scattered-field contribution, we ultimately find the 
following bound [106]: 

. ρ(x, ω) ≤ 1

πω

|χ(ω)|2
Imχ(ω)

∑

sj

∥
∥einc,sj

∥
∥2 = 1

πω

|χ(ω)|2
Imχ(ω)

∑

sj

∫

V

∣
∣Einc,sj

∣
∣2 dx.

(2.62) 

Normalizing by the free-space electric LDOS .ρ0(ω), and performing the integral 
over an enclosing half-space (and keeping only the term that decreases most rapidly
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with separation distance d), one finds [106] 

.
ρ(x, ω)

ρ0(ω)
≤ 1

8(kd)3

|χ(ω)|2
Imχ(ω)

, (2.63) 

where .k = ω/c is the free-space wavenumber. Equation (2.63) represents our first 
near-field bound. This bound only depends on two parameters of the system: the 
separation distance d, relative to the wavenumber, and the material enhancement 
factor: 

.
|χ(ω)|2
Imχ

. (2.64) 

The material enhancement factor encodes a key trade-off: a large susceptibility 
magnitude implies large possible polarization currents, while a large imaginary part 
of the susceptibility implies losses that necessarily restrict resonant enhancement. 
In Drude metals with .χ = −ω2

p/(ω2 + iγ ω), the material enhancement factor is 

given by .ω2
p/γω, showing that the largest possible single-frequency response is 

achievable in materials with large electron densities and small losses. The material 
enhancement factor is described in further detail in Refs. [106, 169]. 

The second key parameter is the distance d; the factor .1/d3 encodes the dramatic 
enhancements that are possible in the near field. These enhancements are typically 
achieved with plasmonic modes, and the factor .1/d3 arises from the most rapidly 
decaying component of the free-space Green’s function, .∼ 1/r3; squaring this 
term and integrating over a three-dimensional volume leads to the inverse-cubic 
dependence. The last point also suggests an important caveat: systems with a 
different dimensionality must have different scaling laws as a function separation 
distance. Designing for 2D materials, for example, leads to integrals over 2D (or 
very thin) domains, leading to a .1/d4 near-field enhancement factor. There are also 
more slowly increasing terms that arise from the mid-field and far-field contributions 
to the free-space Green’s function. 

Finally, it should be noted that certain constraints of interest can be seamlessly 
integrated into the optimization problem of Eq. (2.61). Of particular importance 
in plasmonics applications is radiative efficiency. When one finds a bound on 
extinction or LDOS, the bound may suggest very large enhancements, but all of that 
enhancement could be going into material absorption rather than far-field radiation 
or scattering. Suppose a given application requires a certain radiative efficiency, 
such as some fraction . η of the total emission going into the far field. This can be 
written mathematically as the constraint that absorption be smaller than . (1 − η)

multiplied by the extinction, or .Pabs ≤ (1 − η)Pext. Absorption is quadratic in the 
polarization field, while extinction is linear in the polarization field, such that this 
expression represents an additional constraint that can be seamlessly incorporated 
into Eq. (2.61). Often the bound of interest, with this constraint, is analytically 
solvable. Ref. [110] identifies precisely such bounds on high-radiative-efficiency 
plasmonics, prescribing a trade-off between large response and radiative efficiency.
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In Ref. [110], it is not only shown that high-radiative-efficiency bounds can be 
derived; it is also shown that hybrid dielectric-metal designs can approach the 
bounds and that they surpass the same fundamental limits evaluated for metal-only 
structures. This example showcases the power of using bounds to understand the 
broader landscape of a photonics application area of interest. 

2.4.1.2 CDOS 

Bounds to CDOS can be found along very similar lines to the LDOS bounds of 
above. We can define the trace of the CDOS via Eq. (2.9), taking 

.ρ(x1, x2, ω) = 1

πω
Tr ImG(x1, x2, ω). (2.65) 

Then, we can separate out a scattered contribution coming from the polarization 
fields induced in the scatterer, just as for LDOS, and when this term dominates (i.e., 
the geometry primarily mediates the CDOS), we have 

.ρ(x1, x2, ω) = 1

πω

∑
eT
inc,sj ,x1psj ,x2 , (2.66) 

where the position subscripts on .einc and . p denote the source positions of the 
.sj -polarized dipoles. Hence, in CDOS, the field incident from one position is 
overlapped with the polarization field induced by a source from a second position. 
The bound for CDOS will be identical to that of Eq. (2.62), but with . ‖einc,sj ‖2
replaced by .‖einc,sj ,x1‖‖einc,sj ,x2‖. Finally, normalizing by free-space LDOS and 
dropping all except the most rapidly varying terms as a function of separation 
distances . d1, . d2, one arrives at the bound [7]: 

.
ρ(x1, x2, ω)

ρ0(ω)
≤ 1

4k3
√

d3
1d

3
2

|χ(ω)|2
Imχ(ω)

. (2.67) 

The discussion of the terms that appeared in the LDOS bound of Eq. (2.63) can 
be translated almost seamlessly here: the same material dependence shows up, 
corresponding to the same possibilities for plasmonic enhancement, and the same 
distance dependencies due to the same enhancements of the near fields of the two 
dipoles. There are likely two further enhancements that can be made to Eq. (2.67). 
First, Eq. (2.67) is a factor of 2 larger than Eq. (2.63), when the former is evaluated 
in the limit as .x1 → x2. This is almost certainly because the bound of Eq. (2.67) 
in Ref. [7] came from evaluating bounds for each diagonal element, simplifying, 
and then taking the trace. Taking the trace and then simplifying the bound would 
likely remove this factor of 2. Second, the bound of Eq. (2.67) does not depend on 
the distance between the two dipoles, . d12. This may be physical in certain limits, 
e.g., when a plasmon can maintain its amplitude in propagating from one dipole



2 Fundamental Limits to Near-Field Optical Response 57

to the other, but may not be physical when such propagation is not possible, and 
one would expect improved bounds to capture this. It is likely true that applying 
the many-conservation-law approach of Sect. 2.3.3 would incorporate such effects. 
Nevertheless, Eq. (2.67) is a good starting point to understand the upper limits to 
engineering CDOS in photonic environments. 

2.4.1.3 Smith–Purcell Radiation 

Another exciting application area for the single-frequency bound approach is to 
Smith–Purcell radiation, which is the radiation that occurs when a free electron 
passes near a structured material. A constant-velocity free electron produces only 
a near field, with no far-field component, but when the evanescent wave interacts 
with grating-like structures, the gratings can couple the near fields to propagating far 
fields, leading to a release of energy from the electron in the form of electromagnetic 
radiation. The natural question, then, is how large this energy release can be? 

Mathematically, this question is identical to the question of the work done by 
a dipole (i.e., LDOS), except that the incident field is different in this case, and is 
given by Eq. (2.6). Maximizing the overlap of this incident field with the induced 
polarization field, subject to the same constraint of Eq. (2.61), leads to a bound on 
the Smith–Purcell emission spectral probability given by [112]: 

.Γ (ω) ≤ α

2πc

|χ |2
Imχ

Lθ

β

[
(κρd)K0(κρd)K1(κρd)

]
, (2.68) 

where .Γ = P/h̄ω for emission power P , . α is the fine-structure constant, . β = v/c

is the normalized electron velocity, L and . θ are the height and opening azimuthal 
angle of the cylindrical sector containing the patterned material, .κρ = k/βγ is 
the wavenumber divided by . β and the Lorentz factor . γ , d is the distance of the 
beam from the surface, and . Kn is the modified Bessel function of the second kind. 
Although the exact expression is somewhat complex, we see that Smith–Purcell 
radiation also directly benefits from the material enhancement factor .|χ |2/ Imχ . 
A seemingly surprising conclusion also emerged from Eq. (2.68): slow electrons, 
at small enough separations, can lead to greater radiation enhancements than 
fast (i.e., high-energy) electrons. All constant-velocity electrons do not radiate 
when their speed is smaller than the speed of light in the background medium, 
and emit only near fields. But high-speed electrons are closer to surpassing the 
Cherenkov threshold, and hence the fields they generate decay more slowly, out to 
larger distances. By contrast, low-speed electrons have very strong but very tightly 
confined near fields. But if one brings a patterned surface close enough, the strong 
very near fields of slow electrons have greater potential for radiation enhancements 
than the more moderate near fields of fast electrons. 

Some of the general trends, and absolute numerical values, of the bound 
of Eq. (2.68) were validated theoretically and experimentally in Ref. [112]. In 
particular, Fig. 2.2 shows an experimental setup for measuring the Smith–Purcell
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Fig. 2.2 The bounds of Eq. (2.68) dictate upper limits to Smith–Purcell emission rates. (a–d) The  
experiments of Ref. [112] quantitatively confirm that designed metallic gratings can approach the 
fundamental performance limits (Adapted from Ref. [112]) 

radiation for electron beams with varying energies, as well as designed gold-on-
silicon gratings whose parameters were optimized for maximum response. The key 
result is shown in panel (d), where the gray region indicates the fundamental bounds, 
as a function of photon wavelength, with some width to account for experimental 
uncertainties. The colored data points are quantitatively measured probabilities 
(with no fitting parameters), showing that both the quantitative values of the bounds 
are nearly approachable and that the complex wavelength dependence (emerging 
from an interplay between the material enhancement factor and the optical near 
fields) correctly captures the response of high-performance designs. 

2.4.1.4 Spectral NFRHT 

Near-field radiative heat transfer, NFRHT, introduced in Sect. 2.2.5, offers an  
extraordinary challenge for fundamental limits. It comprises rapidly decaying, 
large-area, broadband thermal sources for which little has been understood about 
upper bounds for quite some time. While we tackle the question of broadband 
enhancements in Sect. 2.4.3, in this section, we describe the recent progress in 
understanding maximum NFRHT at a single frequency. There are three key results
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that we can highlight: channel bounds for planar bodies [57, 60], material-loss 
bounds [111], and an amalgamation of the two [170, 171]. 

Channel bounds to NFRHT are described as “Landauer bounds,” due to their 
similarities with Landauer transport. For planar bodies with in-plane translational 
(and therefor rotational) symmetries, the in-plane wavenumber is a conserved 
quantity, and the energy flux from one body to another can be decomposed into 
propagating and evanescent plane-wave channels with no cross-channel scattering. 
One can decompose the fields emanating from the emitting body into normalized 
plane-wave modes, insert them into the fluctuation-averaged flux, i.e., the average 
of the integral . 12

∫
A

E × H∗ · n̂, for separating plane A and normal vector . ̂n. This  
results in an expression for the flux rate .Φ(ω), of Eq.  (2.20) and Eq. (2.21), given 
by 

.Φ(ω) =
∑

j=s,p

1

2π

∫
d2κ

4π2
T 12

j (ω, κ, d), (2.69) 

where . κ is the in-plane wave propagation constant (and . κ its magnitude), j is a 
polarization index, . k0 is the free-space wavenumber, and the . Ti are “transmission 
coefficients,” which depend on the specific Fresnel reflection coefficients of the 
two interfaces [60]. This expression has an elegant interpretation: NFRHT is the 
composition of plane-wave fluxes, each contributing with a weight . Ti . Moreover, 
the coefficients . Ti are bounded above by 1, for both the propagating and evanescent 
waves [57, 60, 172]. Then, if there is a limit to the largest wavenumber across which 
a nonzero transmission can be achieved, one will have a bound on the maximum 
spectral RHT. 

Hence, it is possible to identify a maximal rate of NFRHT which is given 
by power transferred with “Landauer” transmission unity over all possible plane 
waves [57, 172]. While intuitive, however, this bound has two serious drawbacks. 
The first is that if one literally computes the integral of Eq. (2.69) over all 
possible waves, the result is infinite, as there are an infinite number of plane-wave 
channels. Of course one cannot reasonably expect to achieve unity transmission over 
channels with infinitely large in-plane wavenumbers (as they decay exponentially 
fast), implying that there must be a maximal channel at which the sum should 
be terminated. But how to choose this value? One proposal, from Ref. [57], was 
that the maximal accessible channel should be proportional to . 1/a, where a is 
the lattice spacing of the material, the reasoning being that beyond this limit, the 
use of a continuum model of the materials would not be valid. Another proposal, 
from Ref. [172], is that the maximal accessible channel wavenumber is given by 
.kmax = 1/d, where d is the separation between the two bodies, the reasoning being 
that the exponential decay of the evanescent waves makes it difficult to achieve large 
transmission beyond . 1/d. Each of the resulting bounds (one from .kmax = 1/a and 
the other from .kmax = 1/d) has shortcomings: the lattice-spacing-defined bound is 
extraordinarily high for any reasonable lattice constant, well beyond all other bounds 
discussed below. And the separation-defined bound is in fact not a true bound: it can
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be superseded with reasonable material parameters [111], which in fact do show 
nontrivial transmission beyond . 1/d. Hence, the two known versions of the bound 
are either far too large or surpassable. 

The second serious drawback of using Eq. (2.69) is that it only applies to planar 
bodies with translational symmetry in all directions. The use of conservation laws 
for bounds, discussed next, leads to bounds that can be applied to planar bodies 
with any patterning while also being tighter than the channel bounds resulting from 
Eq. (2.69). 

The first use of conservation laws for spectral NFRHT bounds appeared in 
Ref. [111]. The mathematical procedure is sufficiently complex that we will not 
go through it in detail here, but the intuition can be explained. The idea is to use the 
global conservation law requiring .Pabs ≤ Pext in the spectral NFRHT problem. The 
difficulty is that the sources are embedded within one of the scattering bodies, which 
leads to divergences if one blindly applies the constraint .Pabs ≤ Pext. However, 
the radiative exchange of heat can be decomposed into two subsequent scattering 
problems, both of which have sources separated from scatterers. In the first step, the 
incident field is given by the field emanating from body 1 in the presence of body 
1, with only the second body serving as the scatterer. The absorption in this second 
body is bounded by the extinction by this second body, which leaves a bound in 
terms of the second material and the “incident field” emanating from body 1. Of 
course, we do not know exactly what this field is for any pattern. At this point, 
however, we can use reciprocity to rewrite the field emanating from body 1 in terms 
of fields emanating from the free space of body 2’s domain, being absorbed by 
body 1. The constraint .Pabs ≤ Pext can be applied to this scattering process again, 
ultimately yielding a single-frequency, flux-per-area A bound given by [111] 

.
Φ(ω)

A
≤ 1

16π2d2

|χ1|2
Imχ1

|χ2|2
Imχ2

, (2.70) 

where d is the separation distance between the two bodies and . χ1 and . χ2 are their 
optical susceptibilities, respectively. This bound includes two key dependencies: the 
material enhancement factor .|χ |2/ Imχ and a .1/d2 dependence arising from the 
rapidly decaying near fields in the electromagnetic Green’s function. The bound of 
Eq. (2.70) is promising, as it suggests significant possible enhancements of spectral 
NFRHT, and it is plausible: the actual NFRHT of two planar bodies with equal sus-
ceptibilities, on resonance, is given by .Φ(ω)/A = 1/(4π2d2) ln

[|χ |4/(4(Imχ)2)
]
, 

with nearly identical dependencies as Eq. (2.70), except for the logarithmic 
dependence on the material enhancement. Can this be overcome, with instead linear 
enhancements in .|χ |2/ Imχ? For some materials, the answer is “yes,” as shown with 
computational inverse design in Ref. [173]. More generally, however, such linear 
enhancements are not generic, and one can further tighten the bound of Eq. (2.70). 

Refs. [170, 171] showed that one can tighten the bound of Eq. (2.70) by com-
bining the use of a global conservation law with that of a channel decomposition. 
If one decomposes the general (not specific to translation-symmetric) scattering 
response into plane waves, and further imposes conservation laws for absorption and
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extinction (of the bodies in tandem as well as in isolation), then a long mathematical 
process leads to a tighter bound. If we define .G0,AB to be the free-space Green’s 
function matrix for sources in body A to measurement points in body B, and . gi the 
singular values of .G0,AB , then the resulting bound is given by Molesky et al. [170] 

. Φ(ω) ≤
∑

i

[
1

2π
Θ(ζAζBg2

i − 1) + 2

π

ζAζBg2
i

(1 + ζAζBg2
i )

2
Θ(1 − ζAζBg2

i )

]

,

(2.71) 

where .ζA,B = |χA,B |2/ ImχA,B . One can see that the expression of Eq. (2.71) has 
components of both material response (in .ζA,B ) and channels (in the . gi factors) in 
it. Strikingly, in the near-field limit, expression Eq. (2.71) is given by Venkataram et 
al. [171] 

. Φ(ω)
d2

A
≤ 1

4π2
ln

(

1 + ζAζB

4

)

+ Θ(ζAζB − 4)

8π2

{

ln(ζAζB) + 1

4

[

ln

(
ζAζB

4

)]2
− 2 ln

(

1 + ζAζB

4

)}

,

(2.72) 

which correctly captures the logarithmic material dependence that is seen in planar 
bodies. This significantly tightens the bound of Eq. (2.70) for plasmonic materials 
such as silver or gold which have large material enhancement factors .|χ |2/ Imχ . 
The genesis and utility of the bounds of Eqs. (2.70)–(2.72) are illustrated in Fig. 2.3, 
which contains the derivation of the conservation-law bounds of Eq. (2.70) in  
Fig. 2.3a, the design of structures showing the material dependence of Eq. (2.70) 
in Fig. 2.3b, and the more general combination of conservation law and channel-
decomposition approach of Eq. (2.72) in Fig. 2.3c. 

Generically, it is not possible to find “tighter” single-frequency dependencies 
than those that arise in Eq. (2.72), as both the distance and material enhancement 
dependencies are achievable in realistic-material planar designs. The only possible 
improvements are the coefficient prefactors, as well as the correct material depen-
dence away from the surface-plasmon frequency, suggesting that Eq. (2.72) indeed 
captures the key trade-offs in single-frequency NFRHT. A key remaining question, 
then, is what is possible over a broad bandwidth? This question is resolved in 
Sect. 2.4.3. 

2.4.2 All-Frequency Sum Rules 

In Sect. 2.3.4, we developed the key elements needed for sum rules: a causal linear 
response function, an objective that does not involve the conjugate of that function,



62 O. D. Miller

Fig. 2.3 A collection of bounds on single-frequency near-field radiative heat transfer. (a) The  
approach of Ref. [111] using material loss as the only constraint, exploiting reciprocity to 
bound the response given that the sources are embedded within one of the arbitrarily patterned 
scattering bodies. (Adapted from Ref. [111].) (b) Bounds and designs from Ref. [173] showing 
the feasibility, in specific regimes, of achieving enhancements proportional to the square of the 
material enhancement factor .|χ |2/ Imχ . (Adapted from Ref. [173].) (c) Tightened bounds from 
Refs. [170, 171], precluding the possibility of extraordinary response at frequencies away from the 
surface-polariton frequency of a material of interest (Adapted from Ref. [171]) 

and certain technical conditions (e.g., sufficient decay). Optical extinction is the 
prototype example, as the optical theorem prescribes that extinction should be 
proportional to the imaginary part of the overlap of the incident field with the 
induced polarization field, a quantity that is analytic (for plane-wave incident fields) 
in the upper-half plane. Within the past few years [7, 174], it has been realized that 
there is a near-field analog of extinction: the local density of states, or LDOS. As 
derived in Sect. 2.2.1, (electric) LDOS is given by the trace of the imaginary part of 
the (electric) Green’s function, evaluated at the source location: 

.LDOS(x, ω) = ImTr

[
1

πω
G(x, x, ω)

]

. (2.73) 

The key similarity with extinction is that LDOS is the imaginary part of an 
amplitude, rather than a squared norm (which depends on the complex conjugate 
of that amplitude). At first blush, then, it would appear that one can port exactly 
the derivation used for extinction to derive sum rules for LDOS. However, there are 
three obstacles that must be overcome. 

First, LDOS diverges at high frequencies. Ignoring the effects of a scatterer 
(which are effectively infinitely far away at infinitely large frequencies), and as seen
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in Eq. (2.4), the free-space photon density of states scales as . ω2 as frequency goes 
to infinity. A diverging LDOS violates the asymptotic-decay requirement of KK 
relations, prohibiting a sum rule. The resolution, however, is straightforward: one 
should subtract the free-space LDOS .ρ0(ω) from the total LDOS, leaving only the 
scatterer-based contribution .ρs(ω): 

. ρs(x, ω) = ρ(x, ω) − ρ0(ω) = ImTr

[
1

πω
(G(x, x, ω) − G0(x, x, ω))

]

= ImTr

[
1

πω
Gs(x, x, ω)

]

, (2.74) 

where we define . Gs as the scattered-field part of the Green’s function. After isolating 
the scatterer’s contribution to the LDOS, one can verify that the “scattered LDOS” 
indeed decays sufficiently quickly at high frequencies [7]. Hence, this approach of 
subtracting the free-space LDOS, an approach generalized in “dispersion relations 
with one subtraction” [160], resolves the first issue of diverging LDOS. 

The second issue is that one is not free to arbitrarily choose the pole frequency for 
a KK relation involving the scattered LDOS. The Green’s function itself is finite and 
generically nonzero at every real frequency, but by definition, the LDOS includes 
a factor of . 1/ω, as in Eq.  (2.73). (This does not correspond to a divergent LDOS 
at zero frequency, as the imaginary part of the Green’s function goes to zero at 
frequency, but the real part does not generically go to 0.) This function, then, already 
has a pole at the origin. One could try to move the pole to infinite frequency, for 
example, by multiplying by .ω/(ω − ω0) and taking the limit as .ω0 → ∞, but the  
high-frequency asymptotic behavior of LDOS is quite complicated. Hence, there is 
likely only a single meaningful sum rule for near-field LDOS, which arises from the 
intrinsic pole at zero frequency. 

The third issue is that the real part of the Green’s function diverges, since the 
source and measurement locations coincide; sum rules relate the integral of the 
imaginary part to the real part (or vice versa), which leads to the impermissible 
evaluation of an infinite quantity. (Such an integral should diverge; the free-space 
LDOS increases with frequency, meaning that any integral over all frequencies 
will of course diverge.) One resolution to this issue was proposed in Ref. [175]: 
to remove the longitudinal contribution to the Green’s function, which removes 
the singularity and suggests that over all frequencies there can be no net change 
in spontaneous-emission enhancements. But this removal thereby precludes the 
possibility for near-to-far-field coupling that is crucial for spontaneous-emission 
engineering, which is why a conventional refractive-index sum rule is recovered. 
Instead, it was recognized in Refs. [7, 174] that there is an alternative mechanism 
for overcoming this obstacle: to subtract out the free-space LDOS term from the 
total term. The free-space term is the one responsible for the diverging real part, yet 
the free-space LDOS is exactly known and hence there is no need for a KK relation 
for that part anyhow. Hence, this obstacle is resolved by the same procedure as the 
first one, and we can proceed to deriving a scattered-LDOS sum rule.



64 O. D. Miller

Fig. 2.4 (a) Sum rules, derived using the techniques of Sect. 2.3.4 and the contour on the lower 
left, impose strong constraints on LDOS lineshapes. (b) Electric LDOS of various material half-
spaces and 2D sheets, with different resonance peaks and bandwidths. The inset, however, shows 
that the integral converges to identical values for each scenario. (c) Similarly with magnetic LDOS, 
whose sum rule is now zero. The sum rules are for the scattered-field contributions to the LDOS, 
which can be negative at frequencies where spontaneous emission is suppressed by the presence of 
a scatterer (Adapted from Ref. [7]) 

The hemispherical contour (with hemispherical bump at the origin), in tandem 
with the same Cauchy-residue arguments for far-field sum rules in Sect. 2.3.4, leads 
to a sum rule for .ρ − ρ0 analogous to the far-field case [7]: 

.

∫ ∞

0
ρs(ω, x) dω = 1

2
ReTrGs(x, x)

∣
∣
ω=0 = αLDOS. (2.75) 

Now we have connected the all-frequency scattered-field component of electric 
LDOS to its electrostatic Green’s function. Is that informative? It turns out to be 
quite informative, because there are near-field “domain monotonicity” theorems [7] 
that ensure that this shape-dependent Green’s function term is bounded above by 
its form in any enclosure, and we can choose high-symmetry enclosures where it 
has a simple analytical form. For example, for a planar half-space, the near-field 
electrostatic constant is simply 

.αLDOS,plane = 1

16πd3

[
ε(0) − 1

ε(0) + 1

]

, (2.76) 

where .ε(0) is the zero-frequency (electrostatic) permittivity. For conductive mate-
rials whose permittivity diverges at zero frequency, the corresponding fraction in 
Eq. (2.76) is simply 1, which can also be used as a general bound for any material. 
Notably, for the magnetic LDOS above an electric material, the right-hand side of 
the counterpart to Eq. (2.76) is  zero: the scattering contribution to the magnetic 
LDOS must average out to zero (i.e., it provides suppression and enhancement of 
the free-space LDOS in equal amounts). 

An example of the utility of the LDOS sum rule is given in Fig. 2.4. The electric 
LDOS is shown for three typical metals: gold (Au), silver (Ag), and aluminum 
(Al), as well as for a single graphene sheet (with Fermi level 0.6 eV). These four
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systems show LDOS peaks at quite different frequencies, from below 1 eV to 
beyond 10 eV, with very different quality factors leading to quite different “spreads” 
in their spectral response. Yet as is made clear by the inset of Fig. 2.4, the integrated 
response is exactly equal for each of these systems, as must be true from Eq. (2.76) 
(the material constant . α for each system is exactly 1). Sum rules illuminate unifying 
principles that must apply across seemingly disparate systems. 

2.4.3 Finite, Nonzero Bandwidth 

The techniques of the previous two sections apply to single-frequency and all-
frequency scenarios. In this section, we probe an intermediate regime: finite, 
nonzero bandwidth. Techniques that work for any arbitrary bandwidth would be 
tantalizingly powerful, as they would incorporate the single- and all-frequency 
results as asymptotic limits of a more general theory. Yet the techniques of the 
previous section would seem incapable of extension to nonzero, finite bandwidths: 
there is no single scattering problem for which power-conservation laws can be 
imposed, nor can the contour integrals of the sum-rule approaches be easily 
modified to a finite bandwidth. In this section, we describe two recently devel-
oped approaches to tackle finite-bandwidth bounds: first, transforming bandwidth-
averaged response to a complex frequency (largely following Ref. [7]), and second, 
identifying an oscillator-based representation of any scattering matrix (largely 
following Ref. [176]). 

2.4.3.1 Complex-Frequency Bounds 

Ref. [7] recognized an intermediate route that utilized both techniques in one fell 
swoop. The idea can be summarized succinctly: finite-bandwidth average response 
can be transformed to a scattering problem at a single, complex-valued frequency, 
where quadratic constraints analogous to power conservation can be imposed. The 
complex frequency accounts for bandwidth, while the power-conservation analog 
imposes a finite bound. We now develop this intuition mathematically. 

To compute the bandwidth average of a response function such as LDOS, one 
must define a “window function” that encodes the center frequency, the bandwidth, 
and the nature of the averaging. A common choice is a linear combination of step 
functions, but this choice turns out to be mathematically treacherous. A simple 
(and mathematically serendipitous) choice is a Lorentzian function. Uses of tailored 
window functions for bandwidth averaging were first proposed in Refs. [17, 177]; 
in the first, bandwidth-averaged extinction was analyzed for scaling laws for optical 
cloaking, while in the second, they were used to regularize the computational inverse 
design of maximum LDOS. Our quantity of interest, the frequency-averaged LDOS, 
. 〈ρ〉, can be written as [7]
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.〈ρ〉 =
∫ ∞

−∞
ρ(ω)Hω0,Δω(ω) dω, (2.77) 

where .Hω0,Δω(ω) is the Lorentzian window function: 

.Hω0,Δω(ω) = Δω/π

(ω − ω0)2 + (Δω)2
, (2.78) 

where . ω0 is the center frequency and .Δω is the bandwidth of interest. In Eq. (2.77), 
we define the frequency integral from .−∞ instead of 0 for smoothness; typically, 
the window function will be narrow enough to render this difference negligible; 
conversely, in the all-frequency limit, the symmetry of the LDOS around zero 
frequency ensures we are working with the correct quantity. We are interested only 
in the near-field enhancements of . ρ, so we will drop the free-space LDOS, as 
was useful in the sum-rule section to avoid spatial and spectral divergences. Then, 
consider the integral of Eq. (2.77): it already covers the entire real line, and we 
can imagine adding to it a hemispherical contour in the UHP that will contribute 
infinitesimally. Then the integral is a closed contour, and we can use complex-
analytic techniques based on the analyticity of the integrand and the locations of the 
poles of the integrand. The integrand is not analytic, but the LDOS can be written 
as .ρ(ω) = Im s(ω), where .s(ω), proportional to the trace of the imaginary part of 
the scattered component of the Green’s function, is analytic. Taking the imaginary 
part outside the integral, the remainder of the integrand of Eq. (2.77) has two poles 
away from the lower-half plane: one at zero, thanks to the .1/ω term in the LDOS, 
and a second at .ω0 + iΔω. Then, a few lines of algebra give the frequency average 
of .ρ(ω) as [7] 

.〈ρ〉 = Im s(ω0 + iΔω) + 2Hω0,Δω(0)αLDOS. (2.79) 

The second term comes from the contribution of the sum rule at a given frequency 
and ensures that the ultimate expression will give the sum rule in the asymptotic 
limit .Δω → ∞. Here, for simplicity and pedagogy, we will assume a sufficiently 
narrow bandwidth that the second term can be ignored. (It can always be reintro-
duced in the final expression.) The first term is the imaginary part of the LDOS 
scattering amplitude, evaluated at the complex frequency .ω̃ = ω0 + iΔω. What is 
the largest this term can be? 

To bound the complex-frequency term, we can develop a generalization of 
the real-frequency conservation-law approach. In Ref. [7], we developed such a 
generalization via a somewhat complicated line of differential-equation reasoning; 
here, we develop a simpler (but no less general) integral-equation form. The starting 
point is the complex-valued integral equation: 

.
[
G0(ω̃) + ξ(ω̃)

]
p(ω̃) = −einc(ω̃), (2.80)
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where we have momentarily included all frequency arguments to emphasize that 
Eq. (2.80) is evaluated at the complex frequency . ω̃. Next, we will multiply on the 
left by .p†/ω̃, and take the imaginary part of the entire equation, to arrive at 

.p†
{

Im

[
G0

ω̃
+ ξ

ω̃

]}

p = Im

[(einc
ω̃

)†
p
]

, (2.81) 

This equation can be regarded as a complex-valued extension of the real-valued, 
global conservation law of Eq. (2.25). In particular, the two terms on the left are 
both positive semidefinite, as can be proven by causality (cf. Sec. IX of the SM of 
Ref. [105]). To remove the shape dependence and focus on the material dependence, 
then we can drop the first term on the left-hand side of Eq. (2.81) and rewrite this 
equation as an inequality: 

.p†
[

Im

(
ξ

ω̃

)]

p ≤ Im

[(einc
ω̃

)†
p
]

, (2.82) 

Equation (2.82) imposes a constraint on the strength of the complex-frequency 
polarization field that enters the near-field scattering amplitude .s(ω̃). The exact 
expression for the scattering amplitude is .s(ω̃) = 1

πω̃
TrG0(x, x, ω̃). One can 

maximize the imaginary part of this amplitude subject to the constraint of Eq. (2.82) 
by exactly the procedure outlined in Sec. IX of the SM of Ref. [7]; doing so, one 
arrives at a simple result (remembering that we have dropped the sum-rule term): 

.〈ρ〉 ≤ 1

π

|χ(ω̃)|2
Im[ω̃χ(ω̃)]e†inceinc. (2.83) 

As a reminder, the inner product of the incident field with itself is a volume integral 
of the square of the incident fields. The deep near field is dominated by the most 
rapidly decaying term in the incident fields; integrating only this contribution at 
the complex frequency gives .e†inceinc = 1

16πd3
, where we have taken the arbitrary 

scattering body to fit in a half-space enclosure separated from the source by a 
distance d. Inserting this expression into the inequality, and normalizing by the free-
space LDOS evaluated at . |ω̃|, we finally have a bandwidth-averaged bound [7]: 

.
〈ρ〉

ρ0(|ω̃|) ≤ 1

8|k|3d3 f (ω), (2.84) 

where .f (ω) is the bandwidth-averaged generalization of the material enhancement 
factor (discussed at real frequencies in Sect. 2.4.1.1): 

.f (ω) = |ω̃χ |2
|ω̃| Im (ω̃χ)

. (2.85)



68 O. D. Miller

The material enhancement factor of Eq. (2.85) is slightly simpler than that of 
Ref. [7], thanks to our use of the simpler integral-equation constraint of Eq. (2.81). 

The bound of Eq. (2.84) is the key result: the bandwidth-averaged LDOS has 
an upper bound that is similar to that of the single-frequency LDOS, but reduced 
by the presence of a complex frequency. This reduction is significant for low-loss 
materials, for which .Imχ might be quite small, in which case .Im(ω̃χ) ≈ (Δω)χ , 
wherein the bandwidth effectively provides the relevant loss. There is also an 
additional broadening due to dispersion, as . χ is evaluated at the complex frequency 
. ω̃, at which .Imχ will generally be larger. (There is another additional term in the 
more general version of the bound of Eq. (2.84) that exponentially decays with 
bandwidth, which we excluded for simplicity.) Hence, the bound of Eq. (2.84) has 
three properties that are quite theoretically pleasing. First, in the single-frequency 
limit, it asymptotically approaches the previously derived single-frequency bound. 
Second, in the all-frequency limit, it asymptotically approaches the previously 
derived sum rule. And, finally, in the nonzero- and finite-bandwidth regime, it 
intermediates between the two, with a smaller average response than the single-
frequency bound, and a smaller total integrated response than the sum rule. This 
approach was extended to CDOS and NFRHT in Ref. [7], with similar features 
emerging. One interesting comparison point is to Ref. [178], which examined 
optimal materials for planar NFRHT designs. Unlike the power–bandwidth bounds, 
which increase with electron density and decrease with material loss, Ref. [178] 
found that the key material parameters in planar systems are simply the (ideally 
small) frequency at which surface polaritons are strongest, and the bandwidth over 
which they are strong. This finding has been experimentally corroborated [179], and 
it emerges theoretically in the more general NFRHT bounds of the next subsection. 

Ref. [7] probed the feasibility of approaching the upper bounds in certain 
prototypical systems. Four key results were identified. First, for center frequencies 
close to the surface-plasmon frequencies of metals, planar systems supporting such 
plasmons are able to closely approach the bounds across a wide range of band-
widths. Second, double-cone (bowtie-antenna-like) antennas show a performance 
that can closely approach (nearly within 2X) their bounds across a wide range 
of bandwidths, for center frequencies coincident with their resonant frequencies. 
Third, these bounds were the first to enable systematic comparison of dielectric-
and metal-based systems. Unlike the single-frequency case, the complex-frequency 
material enhancement factor does not diverge for lossless dielectrics (at nonzero 
bandwidth), which enables predictions of the center frequencies and bandwidths at 
which metals can be categorically superior to dielectrics, and vice versa. Finally, 
these bounds also enabled predictions of when 2D materials can be superior to bulk 
materials, and vice versa. The results highlight the power of fundamental limits 
more generally: they enable a high-level understanding of the landscape of a given 
physical design problem, identifying the material and architectural properties that 
really matter. 

The “power–bandwidth” approach of Ref. [7] was recently generalized in 
Ref. [180]. Notice that the constraint of Eq. (2.81) is a global conservation law for 
real power; at the time that Ref. [7] was published, the reactive global conservation
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law, as well as the local-conservation-law approach, had not yet local-conservation-
law approach had not yet been invented. Ref. [180] remedies this gap and shows 
that for dielectric scatterers, the use of additional conservation laws can significantly 
improve the resulting bounds. There is an interesting interplay between the quality 
factor of the sources and the bandwidth of interest, and there are useful semi-
analytical bounds that can be derived from the global conservation laws applied 
to large-scale devices. Moreover, inverse-design structures are shown to come quite 
close to the improved complex-frequency, bounds. 

2.4.3.2 Oscillator-Representation Bounds 

An alternative to the complex-frequency approach to bandwidth averaging was 
very recently proposed in Ref. [176]. We will briefly summarize the (detailed) 
mathematical apparatus developed and highlight the key result for our purposes: 
a new, nearly tight bound for bandwidth-averaged NFRHT. 

Before delving into scattering bodies, consider the bulk optical susceptibility of a 
material. It is known that the response of an isotropic passive material can be written 
as a linear combination of Drude–Lorentz oscillators: 

.χ(ω) =
∑

i

ω2
p

ω2
i − ω2 − iγ ω

ci, (2.86) 

where .ωp is the “plasma frequency” of the material (related to its electron 
density [161, 181]), . ωi are the oscillator frequencies, . γ are infinitesimal oscillator 
loss rates, and . ci are “oscillator strengths” that sum to unity, thanks to the sum 
rule of Eq. (2.50) discussed in Sect. 2.3.4. Often this representation is derived in 
single-electron quantum-material frameworks [161], but it applies more generally 
as a consequence of causality and passivity. (The technically rigorous mathematical 
statement uses the theory of Herglotz functions [182].) Any linear material’s 
susceptibility must conform to the Drude–Lorentz linear combination of Eq. (2.86), 
perhaps not with a small number of oscillators (it is well known that effects such 
as inhomogeneous broadening lead to other lineshapes, such as the “Voigt” line-
shape [183]), but with sufficiently many oscillators. It may seem counterintuitive to 
work with a representation that may need 1,000, or even 100,000 oscillators, instead 
of a different model with fewer parameters. From an optimization perspective, 
however, this is not correct. In the Drude–Lorentz representation of Eq. (2.86), the 
only degrees of freedom are the . ci coefficients, and the susceptibility is linear in 
these degrees of freedom. In many scenarios, large linear optimization problems are 
significantly easier to solve (sometimes even analytically) than large, nonlinear (and 
nonconvex) optimization problems. 

Causality and passivity create three key ingredients that together lead to the 
Drude–Lorentz representation of Eq. (2.86): a Kramers–Kronig relation, a sum rule, 
and positivity of the imaginary part of the susceptibility. The exact sequence of
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transforming those ingredients to the Drude–Lorentz representation is detailed in 
Ref. [164]. One intuitive description is that the imaginary part of the susceptibility 
is a positive quantity and can be discretized into coefficients at many discrete 
frequencies along the real axis. Passivity implies that these coefficients are real, 
while the sum rule implies that their sum is constrained. Finally, the Kramers– 
Kronig relation guarantees that the imaginary parts of the susceptibilities are the 
only degrees of freedom; the real parts are entirely determined by the imaginary 
parts. Compiling the mathematical details of these steps leads to Eq. (2.86), which 
is a relation that many find intuitive, thanks largely to the fact that it can be derived 
in single-electron quantum mechanics. 

The key idea of Ref. [176] is that there is a wave-scattering operator that exhibits 
nearly identical mathematical properties to material susceptibilities. This operator 
is the “. T” matrix. The . T matrix is a scattering matrix that relates the polarization 
field induced in any scattering body to the incident fields impinging upon it [184]: 

.P(x, ω) =
∫

V

T(x, x′, ω)Einc(x′, ω) dx′, (2.87) 

or, in vector notation: 

.p = Teinc. (2.88) 

The . T matrix is a causal linear response function, as the polarization field at . x
cannot be excited before the incident field exciting it reaches . x′. Just as causality 
implies a Kramers–Kronig relation for material susceptibilities, it was recognized 
in Ref. [176] that causality implies a Kramers–Kronig relation for . T matrices. Sum 
rules come from the low- and high-frequency asymptotic behavior of Kramers– 
Kronig relations, and the . Tmatrix satisfies a matrix-valued analog of the f -sum rule 
for material oscillator strengths. Finally, just as passivity implies that the imaginary 
parts of susceptibilities are positive, it similarly implies that the anti-Hermitian part 
of the . T matrix is positive semidefinite. Together, these three ingredients imply a 
matrix-valued analog of Eq. (2.86) for any . T matrix: 

.T(ω) =
∑

i

ω2
p

ω2
i − ω2 − iγ ω

Ti , (2.89) 

where the Drude–Lorentz parameters are exactly the same as in Eq. (2.86) and the 
. Ti are now matrix-valued coefficient degrees of freedom. The exact expression of 
Eq. (2.89) is for the case of reciprocal materials; in nonreciprocal terms, there is 
an extra term that makes the calculations more tedious but has no effect on most 
applications of interest. Analogous to the constraints on material oscillator strengths, 
passivity and the .T-matrix sum rule lead to constraints on the . Ti :
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.

∑

i

Ti = I, Ti ≥ 0, (2.90) 

where . I is the identity matrix. Equation (2.89), and its nonreciprocal analog, must 
hold for any linear electromagnetic scattering process. Even in scattering processes 
with complex interference phenomena, Fano resonances, etc., .T(ω) must exhibit 
lineshapes consistent with Eq. (2.89), which is shown in Ref. [176] to reveal 
surprising structure even in typical scattering problems. 

Our interest in this chapter, however, is in fundamental limits, so we will focus 
on the utility of Eq. (2.89) to identify upper bounds in the application considered 
in Ref. [176], which is NFRHT. The approach in the paper requires a dozen or 
so mathematical steps explained in Sec. IX of the SM of Ref. [176]; the key 
is to transform the problem from one of thermal sources inside the hot body 
radiating power to the cold one to one of incoherent sources between the bodies 
radiating back to the emitter body. There are various other key steps, such as an 
appropriate renormalization of the point sources between the bodies. Ultimately, 
the culmination is the following: NFRHT is rewritten in terms of the total . T matrix 
of the collective bodies, at which point the representation of Eq. (2.89) is inserted. 
Then, the entire frequency dependence of the problem is given by the collective 
products of the Drude–Lorentz oscillators and the Planck function, whose integrals 
can be determined analytically. Then one is left with a linear summation of given 
coefficients multiplying the unknown . Ti degrees of freedom. The optimization over 
all possible . Ti , subject to the constraints of Eq. (2.90), has many unknowns, but can 
be done analytically, leading to a simple yet completely general bound on thermal 
HTC: 

.HTC ≤ β
T

d2 , (2.91) 

where T is the temperature, d is the separation, and .β ≈ 0.11k2B/h̄ is a numerical 
constant. Equation (2.91) is an unsurpassable limit that captures the key constraints 
imposed on every scattering . T matrix. Strikingly, despite the relative simplicity of 
the approach, it offers the tightest bounds on NFRHT to date, only a factor of 5 
larger than the best theoretical designs [178]. Previous approaches suggested strong 
material dependencies, with bounds that increased with electron density, whereas 
planar designs show the reverse trend. In this bound, use of a low-frequency sum 
rule in the .T-matrix representation leads to an electron-density-independent bound. 
Moreover, the optimization over . Ti predicts precisely the same optimal peak transfer 
frequency as the best designs [176]. 

There are two sets of relaxations used to arrive at the bound of Eq. (2.91): 
first, beyond the representation theorem, no other Maxwell-equation constraints 
are imposed. Hence, the optimal . Ti may not actually be physically realizable. 
Potentially, one could impose such constraints exactly by the local-conservation-
law approach discussed above. Second, the heat transfer process is relaxed to 
the emission of the sources between the bodies into both the source and emitter,
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whereas the exact expression is the difference between the radiation into the 
emitter and receiver bodies. The latter relaxation leads to a linear dependence 
on .T(ω), as opposed to the quadratic dependence in the exact expression. It 
may be possible to optimize over the exact quadratic expression using manifold 
optimization techniques [176, 185, 186]. Tightening these relaxations may lead to a 
further tightening of the bound. Conversely, they may lead to the same bound, and 
improved design techniques [187] may identify structures that can achieve them. 

2.4.4 Mode Volume 

In this final section, we turn to the question of bounds on mode volume. Mode 
volume is a very different response function than any of those previously considered, 
as it is a property of an eigenfunction rather than a scattering quantity. There is no 
incident field in the definition of a mode volume, and hence the power-conservation 
and causality-based approaches of the previous sections are not immediately useful. 
In this section, we describe a method for bounding minimum mode volumes based 
on the optimization-theoretic notion of duality. 

In optimization theory, the dual of an optimization problem is a second opti-
mization problem, related to but distinct from the original, “primal” optimization 
problem [151]. The dual problem is formed by incorporating all constraints into the 
Lagrangian of the original optimization problem, introducing Lagrange multipliers 
as coefficients of the constraints, and optimizing out the primal variables, leaving 
only the Lagrange multipliers as degrees of freedom. An equivalent interpretation is 
that if one interprets a generic minimization optimization problem as the minimax 
of a Lagrangian, the dual problem is the maximin of the same Lagrangian. The 
dual program has two properties that can be quite useful for optimization and 
bounds: it is always a concave maximization problem (equivalent to a convex 
minimization problem, and therefore efficiently solvable by standard convex-
optimization techniques), and its maximum is guaranteed to be a lower bound for 
the original, primal, minimization problem. 

For many optimization problems, the dual cannot be expressed in a simple form; 
even among those problems for which it has a simple expression, it often has the 
trivial solution .−∞ as its maximum, giving a trivial lower bound. Ref. [188] showed  
that a very special class of electromagnetic design problems have a nontrivial, semi-
analytical dual problem. In particular, for design problems in which the objective 
function to be minimized is the norm of a difference between the electric field . E
and some target field .Etarget, 

.F = ‖E − Etarget‖2, (2.92) 

then one can impose the full Maxwell-equation constraints and identify a nontrivial, 
semi-analytical dual problem. One might suspect that objectives of the form of
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Eq. (2.92) might be quite common: after all, a focusing metalens could have a 
target field that matches an Airy beam along a focal plane, a surface-pattern design 
intended to maximize spontaneous-emission enhancements could target the field 
at the location of the dipole, and so forth. But these cases do not work for the 
expression of Eq. (2.92): for a nontrivial dual problem, the field .Etarget must be 
specified at every spatial point of the entire domain. This includes, for example, the 
points within the scatterer, the points within any PML regions, etc. Knowing a target 
field at a single point, or on a focal plane, is not sufficient. And it is hard to think of 
any application in which we know the target field across the entire domain. 

It turns out, however, that mode-volume minimization can be reformulated to 
target an objective specified over the entire domain. Mode volume, as specified in 
Eq. (2.22), is given by the integral of the field energy over all space divided by the 
field energy at a single point. Typically, the integral is treated as a normalization 
constant (taken to equal 1), and maximization of the field energy at a single point 
is the key objective. In Ref. [189], it was recognized that this convention could be 
reversed: the field energy at the point of interest can be fixed as a normalization 
constant, equal to 1, while minimizing the integral of the field energy can be the 
objective. Such an objective is exactly of the form of Eq. (2.92), with a target field 
of 0 everywhere! Physically, this makes intuitive sense: a minimum mode volume 
tries to minimize the field energy at every point, except for the “origin” of interest; 
everywhere else, it wants to drive the field as close to a target of 0 as possible. 

Given this transformation, and a few others described in Ref. [189], one can 
use the formulation of Ref. [188] to specify a dual program for the mode-volume 
minimization problem. The solutions of this dual program can be formulated 
with the modeling language CVX [190] and solved with Gurobi [191], and those 
solutions represent fundamental lower bounds on the mode volume, given only a 
designable region and a refractive index of the material to be patterned. 

First, the 2D TE case encapsulates scalar-wave physics: without vector fields, 
there are no field discontinuities across boundaries that can be responsible for large 
field amplitudes in “slot-mode” configurations [16, 18, 19]. There is also no near 
field for scalar waves, in the sense of large nonpropagating fields that culminate in a 
singularity at the location of a point source. In this case, the argument for a trivially 
small mode volume near a perfectly sharp tip fails: the lack of a singularity means 
that one cannot drive the field at the location of the source arbitrarily high. If there 
is no sharp-tip enhancement (as we will see), then dimensional arguments would 
require mode volume to scale with the square of the wavelength (in 2D), restoring 
the notion of a “diffraction-limited” mode volume. The only question, then, is the 
value of the coefficient of the squared wavelength. The duality-computed bounds 
confirm indeed that below some separation distance d, the mode-volume bounds 
asymptotically flatten out, to a small fraction of the square wavelength. This bound 
depends only on the available refractive index of the designable region and has been 
closely approached by inverse-designed structures [17, 189]. 

The 2D TM case is fundamentally different: sharp field discontinuities occur 
across material boundaries, and singularities in the near field of point sources imply 
the possibility for zero mode volume unless fabrication constraints, or similarly a
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nonzero source–scatterer separation distance, are enforced. In this case, the duality-
based approach finds quite different scaling: the 2D TM mode-volume bounds 
scale as . d2, where d is the relevant source–scatterer distance (or sharp-tip radius 
of curvature), with no dependence on the wavelength. Intriguingly, this scaling is 
faster than the typical structure used for mode-volume minimization: a “bowtie 
antenna” [18, 19], whose optimal mode volume appears to scale only linearly with 
d (and hence linearly with wavelength, . λ, as well). In Ref. [189], it is shown that 
inverse-designed structures appear to exhibit mode volumes that scale roughly as 
. d1.4, faster than the linear scaling of bowtie antennas but not quite as fast as the 
duality-based bound. At smaller length scales, these differences can be dramatic. For 
minimum feature sizes .d ≈ 0.01λ, the inverse-design curve falls about 5X below the 
bowtie-antenna curve, which itself is 40X above the mode-volume bound. Resolving 
this gap, either through identifying better designs or by identifying tighter bounds, 
could lead to significant reductions in mode volume through near-field engineering. 

2.5 Summary and Looking Forward 

Near-field optical response can require significant mathematical machinery, and the 
techniques to bound them even more so. We were careful above to give correct and 
sometimes nearly complete mathematical descriptions. Here, we can give a high-
level summary of three of the prototypical response functions and application areas 
covered: 

• LDOS, arguably the most important near-field response function, has single-
frequency bounds that scale as .1/d2 and .|χ(ω)|2/ Imχ(ω) [106]. This bound 
can be achieved at the surface-plasmon frequency of a given material; away 
from that frequency, inverse designs have shown good performance that can be 
relatively close to the bound, but generally it is also true that tighter bounds can be 
computed by using additional constraints. A sum rule is known for all-frequency 
LDOS [7, 174], which depends on the separation but not on the material; 
over finite bandwidth, bounds similar to the single-frequency expression can be 
found, albeit evaluated at the complex frequency. Again, these bounds are nearly 
achievable when the frequency range is centered around the surface-plasmon 
frequency of a material, but can be tightened in other scenarios (e.g., dielectric 
materials) [115]. The key open questions around LDOS are twofold: first, is 
there an analytical or semi-analytical bound that can be derived that is nearly 
achievable across all frequencies? And can one identify achievable bounds for 
only the radiative part of the LDOS, i.e., that fraction of power that is emitted to 
the far field? 

• Near-field radiative heat transfer is one of the most technically challenging areas 
of near-field optics, both experimentally and theoretically, but an abundance of 
work makes it perhaps the area where we have the best understanding of what is 
possible. For planar bodies, there are simple and powerful transmission expres-
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sions for NFRHT [57, 60], as well as an understanding of the optimal materials 
that lead to the largest response [178, 192, 193]. At a single frequency, semi-
analytical bounds have been derived [171] that scale as .1/d2 with separation 
distance and logarithmically with .|χ(ω)|2/ Imχ , both dependencies of which 
are exhibited by planar structures. Finally, when averaging against the Planck 
function to account for the thermal nature of the radiation, the recently developed 
oscillator theory of . T matrices [176] enables a bound proportional only to 
.1/d2 and .k2BT /h̄, with no material dependence. This bound can be approached 
within a factor of 5 by the best theoretical designs, showing a comprehensive 
understanding of what is possible in NFRHT, and the materials and structures 
needed to achieve that performance. One interesting open question is how this 
bound changes when one of the bodies must have a bandgap, as is required, for 
example, in thermophotovoltaics. 

• Finally, mode volume is quite different from the other response functions 
considered above. It is a property of an eigenmode, instead of a scattered field, 
and hence some of the techniques based on power conservation do not lead to 
useful bounds in this case. The only approach we know of that leads to useful 
bounds relies on the duality technique of optimization theory. The most important 
question surrounding mode volume is how it scales with minimum feature size 
d. Ideally, it would scale as . dn, where n is the dimensionality of the system 
(either 2D or 3D), with no dependence on wavelength; this scaling would lead to 
the largest enhancements at highly subwavelength feature sizes. Certainly, such 
scaling is possible with plasmonic structures, but plasmonic structures are too 
lossy, and the concept of mode volume itself must be modified for plasmonic 
mode volume [25]. The question, then, is the optimal scaling for dielectric 
materials. Interestingly, the duality-based bounds of Ref. [189] suggest exactly 
. dn scaling. However, bowtie-antenna structures show .dn−1 scaling, while inverse 
designs appear to show a scaling between these two. Hence, progress has been 
made on this crucial question, but it is still not fully resolved: what is the best 
possible scaling of mode volume with minimum feature size? 

The theory of fundamental limits to near-field optical response is now sufficiently 
rich to be summarized in a book chapter, as we have done here. But the story is 
not complete: as we have seen in numerous examples, including the three above, 
there are still many response functions, material regimes, and frequency ranges at 
which there are gaps between the best known device structures and the best known 
bounds. Many of the bound techniques described herein have only been discovered 
in the past few years, and there are likely still significant strides to be made. The 
optical near field continues to offer a fertile playground for theoretical discovery, 
experimental demonstration, and new devices and technological applications.
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2.6 Appendix: Complex Analysis for Sum Rules 

Here we provide a brief summary of the basic rules of complex analysis, and how 
they are derived, emphasizing the key results relevant to sum rules. More expansive 
discussions of these ideas can be found in any good complex-analysis textbook. 

First, we start with the definition of complex differentiable: a function f is 
complex differentiable if the limit 

.f ′(z) = lim
h→0

f (z + h) − f (z)

h
(2.93) 

exists for h along any path in the complex plane. The equality along any path 
is a very strong constraint and leads to the Cauchy–Riemann conditions on the 
derivatives of the real and imaginary parts of f . A function that is complex 
differentiable at every point on some domain . Ω is holomorphic on . Ω . A major  
theorem of complex analysis is that all such functions are also complex analytic 
(which means they have a convergent power series in a neighborhood of every point 
in . Ω). From complex differentiability, it is a straight path to Cauchy’s integral 
theorem: for  f holomorphic on . Ω , and a closed contour . γ in . Ω , 

.

∮

γ

f (z) dz = 0, (2.94) 

which can be proven by setting .f = u+iv, .dz = dx+idy, applying Green’s/Stokes 
theorem, and using the Cauchy–Riemann conditions. 

An important technique for integrals over open contours is contour shifting: if  
. γ and . γ̃ are contours with the same endpoints, then 

.

∫

γ

f (z) dz =
∫

γ̃

f (z) dz. (2.95) 

This follows directly from reversing the second contour, combining it with the first 
to make a closed contour, and applying Cauchy’s integral theorem. Contour shifting 
is common in Casimir physics, for example, where the standard transformation is a 
“Wick rotation” from the positive real axis to the positive imaginary axis [194]. 

One can use contour shifting to prove an important integral formula. Consider the 
closed-contour integral .

∮
γ

f (z)
z−z0

dz, where f is holomorphic on . γ , but there is now a 
singularity in the integrand. For any arbitrary closed contour . γ , one can follow the 
prescription of Fig. 2.5: first, make a tiny perforation in the contour and then use that 
perforation to shift to a modified contour that comprises two straight lines (whose 
integrals cancel by directionality) and a tiny circle at the origin. On the tiny circle, 
we can write .f (z) ≈ f (z0). On the circle, .z = z0 + εei2πt , for  t from 0 to 1, where 
. ε is the radius of the circle on . γ̃ , such that
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Fig. 2.5 Equivalent contours –the latter two by contour shifting– simplify the integration of any 
closed contour around a singularity (left) to that of a circle arbitrarily close to the singularity (right) 

. 

∮

γ̃

f (z)

z − z0
≈ f (z0)

∮

γ̃

1

z − z0
dz

= f (z0)
1

ε

∮
e−i2πt d

(
εei2πt

)

= 2πif (z0). (2.96) 

Equation (2.96) is  Cauchy’s integral formula. 
One can take derivatives of Eq. (2.96) with respect to . z0 to yield an expression 

for the first derivative: 

.f ′(z0) = 1

2πi

∮

γ

f (z)

(z − z0)2
dz, (2.97) 

and more generally Cauchy’s differentiation formula: 

.f (n−1)(z0) = (n − 1)!
2πi

∮

γ

f (z)

(z − z0)n
dz, (2.98) 

It is then one final step to get from Cauchy’s differentiation formula to the residue 
theorem. Set the integrand in Eq. (2.98) to a function .g(z), which has a pole of order 
n at . z0. By a Laurent expansion, we can write any function with a pole of order n at 
. z0 in this form. Then we have the residue theorem: 

.

∫

γ

g(z) dz = 2πi
∑

ρ

Res(f ; z0), (2.99) 

where the residue of f at . z0 is defined as 

.Res(f ; z0) = 1

(n − 1)! lim
z→z0

dn−1

dzn−1

[
(z − z0)

nf (z)
]
. (2.100) 

For .n = 1, a simple pole, the residue is given by 

. lim
z→z0

[(z − z0)f (z)] . (2.101)
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