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Abstract: The Kramers-Kronig relations and various oscillator strength sum rules represent
strong constraints on the physical response of materials. In this work, taking inspiration from the
well-established equivalence between f -sum rules and Thomas-Reiche-Kuhn sum rules in linear
optics, we explore the connection between causality-based and quantum-mechanics-based sum
rules in the context of nonlinear optical processes. Specifically, by considering the sum-over-states
expression for the second harmonic generation susceptibility, we deduce a new representation basis
for the imaginary part of this susceptibility and we use it to derive, from causality-based integral
sum rules, a new set of discrete sum rules that the transition dipole moments must satisfy. As in
the case of the Thomas-Reiche-Kuhn sum rules, we also show that these results can alternatively
be derived through an independent quantum mechanical analysis. Finally, we consider the
implications of the derived sum rules for the second-harmonic-generation susceptibility of two-
and three-level systems and, more broadly, we discuss the possible significance and challenges of
using these results for the goal of identifying fundamental limits to the response of nonlinear
optical materials.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Any physical response must satisfy the principle of causality [1]. In linear optics, this principle
dictates that the electric susceptibility of a material, χ(1)(ω), is holomorphic in the upper half
of the complex ω−plane, where ω is the angular frequency of the electromagnetic excitation.
As a result of this property, and assuming the susceptibility is sufficiently well-behaved (square
integrable), Re{χ(1)(ω)} and Im{χ(1)(ω)} are connected through integral relations known as the
Kramers-Kronig relation [2]. However, causality does not always lead to analyticity in nonlinear
optics, as seen for example in the nonlinear process of self-induced change in refractive index
[3,4].

Nevertheless, Kramers-Kronig relations can be established for many nonlinear optical responses
of interest, including any process in which all input frequencies are fixed (corresponding to fixed
pump beams, e.g.), except one (the "probe" beam) [5]. For cases in which the input frequencies
are mutually dependent and varied at the same time, the Bassani-Scandolo theorem [6] gives
conditions under which Kramers-Kronig relations can be derived. This theorem relies on the
selection of a one-dimensional space embedded in the n-dimensional space of the interdependent
frequency variables. Notably, harmonic generation, of any order, satisfies the Bassani-Scandolo
theorem and Kramers-Kronig relations can be derived from the holomorphic properties of the
corresponding susceptibility [5].
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A prominent nonlinear process satisfying Kramers-Kronig relations is second-harmonic
generation (SHG), described by a second-order susceptibility χ(2)(ω,ω), which results in the
doubling of the incident frequency of light. Dipoles of noncentrosymmetric materials can oscillate
under the action of the incident field as asymmetric anharmonic oscillators, radiating at 2ω,
twice the incident frequency ω, in addition to their usual radiation at ω. This nonlinear process
is employed in high-power lasing at specific wavelengths, as well as various applications in
microscopy, ultra-short pulse measurement, and materials characterization [7–12]. Despite being
one of the most important processes in nonlinear optics, there is still limited understanding of the
fundamental constraints to harmonic generation in terms of either its resonance properties (e.g.,
optimal number and location of resonances) or the involved transition dipole moments. The most
important known constraint on transition dipole moments is the so-called Thomas-Reiche-Kuhn
(TRK) (or oscillator strength) sum rule [13]. While the TRK sum rule is discrete and derived
from quantum-mechanical arguments, it is equivalent to the causality-based integral f−sum
rule, which relates the integral of the imaginary part of the linear susceptibility, over the entire
electromagnetic spectrum, to the total electron density [5,14]. One can derive the TRK sum
rule from the f−sum rule by discretizing the integral through a physically motivated oscillator
representation of the linear susceptibility, as further discussed in Section (3) and in [15], where
the discretized causality-based sum rule was used to bound the linear optical response of any
transparent medium. The equivalence between these sum rules, derived from very different
arguments, is nontrivial and surprising, with important implications for the analysis and design
of new materials and metamaterials with extreme response [16].

In this work, considering the case of SHG, we explore a new connection between causality-
based integral sum rules and quantum-mechanics-based discrete sum rules, unveiling new
constraints on the transition dipole moments and various implications for the SHG process. This
is achieved by considering the Kramers-Kronig relations enforced by the principle of causality
for the SHG susceptibility, χ(2)(ω,ω), in combination with a new representation basis for the
imaginary part of the susceptibility deduced from the perturbation solution to the Schrödinger
equation. The validity of the new set of discrete sum rules derived here is also confirmed by an
independent quantum mechanical analysis. As in the case of TRK and f−sum rules, two very
different approaches lead to identical results.

In the following, the Kramers-Kronig relations and associated integral sum rules for the SHG
susceptibility are briefly reviewed in Section (2). In Section (3), a new representation basis for the
imaginary part of the SHG susceptibility is established and used to derive new discrete sum rules
on the transition dipole moments. In Section (4), these sum rules are related to an independent
quantum mechanical analysis, further proving their validity. In Section (5), examples of two-level
and three-level systems are given, discussing various implications of the derived sum rules for
the SHG process in these systems. Finally, in Section (6) we summarize our results, discuss the
significance of our findings, and highlight a few open questions.

2. Kramers-Kronig relations and integral sum rules for Im
{︁
χ(2)(ω,ω)

}︁
Scandolo and Bassani [17] presented an elegant proof showing that χ(2)(ω,ω), ω2 χ(2)(ω,ω), and
ω4 χ(2)(ω,ω) are holomorphic in the upper half of the complex frequency plane and exhibit an
asymptotic high-frequency decay faster than ω−1. As a result, several Kramers-Kronig relations
for the SHG susceptibility can be derived (for brevity, only the relations for the real part of
χ(2)(ω,ω) are shown here):

ω2mRe
{︂
χ(2)(ω,ω)

}︂
=

2
π

∫̄ ∞

0

ω′2m+1Im
{︁
χ(2)(ω′,ω′)

}︁
ω′2 − ω2 dω′, (1)

where m = 0, 1, 2 and
∫̄

indicates the principal value integral. In the same work [17], the
asymptotic behavior of the SHG susceptibility was also used to determine the following integral
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sum rules: ∫̄ ∞

0
ωIm

{︂
χ(2)(ω,ω)

}︂
dω = 0, (2)∫̄ ∞

0
ω3Im

{︂
χ(2)(ω,ω)

}︂
dω = 0, (3)∫̄ ∞

0
ω5Im

{︂
χ(2)(ω,ω)

}︂
dω = −

π

16
e3N
m3

⟨︃
∂3V
∂x3

⟩︃
0

, (4)

where N represents the electron density, e is the electron charge, m is the electron mass, V(x)
denotes the potential experienced by the electrons, and the averaging of the third derivative
in Eq. (4) is conducted over the ground state of the system. Interestingly, it is clear that the
imaginary part of χ(2)(ω,ω) has to change sign along the electromagnetic spectrum in order
to satisfy Eqs. (2)–(4). In contrast to the imaginary part of the linear susceptibility, however,
Im

{︁
χ(2)(ω,ω)

}︁
does not directly correlate with optical absorption or gain. Instead, it denotes

a phase relationship between nonlinear polarization and applied fields, without necessarily
implying any time-averaged absorbed or gained power [18].

In addition to Eqs. (1)–(4), Kramers-Kronig relations that calculate Im
{︁
χ(2)(ω,ω)

}︁
from

Re
{︁
χ(2)(ω,ω)

}︁
can also be obtained, and an extra set of sum rules for Re

{︁
χ(2)(ω,ω)

}︁
was also

established in [17]. These theoretical results have been used to assist in the analysis of experimental
data, facilitating the connection between the phase and amplitude of the susceptibilities [19,20],
and providing insight into the possible presence of additional contributions outside the measured
frequency range.

3. Basis for Im
{︁
χ(2)(ω,ω)

}︁
and new discrete sum rules

A perturbative solution to the Schröndiger equation gives the well-established sum-over-states
expression for the nonlinear SHG susceptibility [21,22]

χ(2)(ω,ω) =
Ne3

ℏ2

∑︂
n,m

′

[︃
x0nx̄nmxm0

(ωn0 − 2ω − iγn)(ωm0 − ω − iγm)
+

x0nx̄nmxm0
(ωn0 + ω + iγn)(ωm0 + 2ω + iγm)

+
x0nx̄nmxm0

(ωn0 + ω + iγn)(ωm0 − ω − iγm)

]︃
,

(5)

where x represents the position operator, xnm = ⟨n|x|m⟩ denotes its (n, m) element, x̄ = x − x00I
(i.e., x̄ is the same as the position operator for its off-diagonal elements and the difference of the
position operator with x00 for its diagonal elements), and the notation

∑︁ ′ indicates that the ground
state is excluded from the summation over the states, i.e., the summation is conducted solely over
the excited states. The energy level differences are given by En0 = ℏωn0 = ℏ(ωn −ω0). As usually
done, since the dipole moment of the molecule is proportional to the position (µ = −ex), we refer
to xnm as the transition dipole moments and to xnn as the dipole moment of the excited state. γn is
a linewidth parameter (decay rate) that phenomenologically models various broadening/damping
mechanisms [4]. We assume that the system is initially in its ground state, denoted as |0⟩.

Following [23], using fractional decomposition, one can then rewrite Eq. (5) in a more compact,
yet still general, form:

χ(2)(ω,ω)=
∑︂

n

′

[︄
α
(n)
1

(ωn0 − ω − iγn)
+

α
(n)
2

(ωn0 − 2ω − iγn)

]︄
+
∑︂
n′

′ α
(n′)
3

(ωn′0 − ω − iγn′)
2 + (ω→ −ω)∗.

(6)
Here, n′ denotes doubly resonant conditions where either ωmn′ = ωn′0 or ωm0 = ω0n′ (note

that, if “0” denotes the ground state, the latter resonant condition would correspond to a negative
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transition frequency, and hence to an “antiresonance” that can only be induced in an active
system; however, our analysis will be limited to passive systems). (ω→ −ω)∗ denotes the sum of
the negative-frequency and complex-conjugate functions as calculated from the first three terms
of (6). The coefficients α(n)1 and α(n)2 are the nonlinear oscillator strengths associated with single-
and two-photon resonances at ωn0, respectively, and α(n

′)

3 is the oscillator strength associated with
the specific condition of a double-resonance. These nonlinear oscillator strengths are given by

α
(n)
1 =

Ne3

ℏ2

∑︂
m

′ 1ωmn≠ωn0

(ωm0 − 2ωn0)
x0mx̄mnxn0 +

Ne3

ℏ2

∑︂
m

′ 1ωm0≠−ωn0

(ωm0 + ωn0)
x0mx̄mnxn0, (7)

α
(n)
2 =

2Ne3

ℏ2

∑︂
m

′ 1ωnm≠ωm0

(2ωm0 − ωn0)
x0nx̄nmxm0, (8)

α
(n′)
3 =

Ne3

2ℏ2 1ωmn′=ωn′0x0mx̄mn′xn′0 −
Ne3

ℏ2 1ωm0=−ωn′0x0mx̄mn′xn′0. (9)

The algebraic manipulation giving Eq. (6) from Eq. (5) was initially introduced in [23], albeit
with the goal to study a single doubly resonant system (namely, with only one term for each
of the summations in (6)). Instead, here we are interested in how the general form of Eq. (6)
suggests a possible basis to discretize the integral sum rules discussed in Section (2). To this end,
in the limit of vanishing linewidth, by inspecting Eq. (6) one can deduce the following expression
for the imaginary part of the nonlinear susceptibility,

Im{χ(2)(ω,ω)} =
∑︂

n

′

lim
γn→0+

(︄
Re{α(n)1 }fγn (ω − ωn0) +

Re{α(n)2 }

2
fγn/ 2(ω − ωn0/2)

)︄
+

∑︂
n′

′

lim
γn′→0+

(︂
Re{α(n

′)

3 }f ′γn′
(ω − ωn′0)

)︂
,

(10)

where fγn (ω) is the Lorentzian distribution: fγn (ω) =
γn

ω2+γ2
n
, and f ′γ is its frequency derivative.

Note that the 1/2 weight and the modified broadening γn/2 of the Lorentzian associated with
two-photon resonances is in full agreement with the permutation symmetry of the nonlinear
susceptibility [4]. Additionally, it is easily found that limγn→0+ fγn,γn/ 2(ω) = πδ(ω), (see, e.g.,
[24]) and limγn→0+ f ′γn (ω) = πδ

′(ω), where δ is the Dirac–δ distribution and δ′ its frequency
derivative. One can then verify that substituting (10) into the Kramers-Kronig relation (1) yields
(6) for the case of γn = 0. We also note that, in writing Eq. (10), we made the assumption that only
the real part of the coefficients α(n)1 , α(n)2 and α(n

′)

3 enter this expression, essentially neglecting the
effect of the transition dipole moments’ phases on the imaginary part of the susceptibility. Rather
surprisingly, while this assumption is strictly valid only in the off-resonance case, ω ≪ ωn0
(which is important, per se, in many ultrafast applications), it ultimately leads to sum rules that
are completely general, as proven by an independent quantum mechanical analysis in Section (4).

The considered expression for the imaginary part of the SHG susceptibility, in the limit of
vanishing linewidth, involves delta functions and their frequency derivative. Specifically, there
are two delta functions for each resonance frequency, ωn0, corresponding to single-photon and
two-photon resonances, as well as the possible inclusion of the derivative of a delta function for
the doubly resonant case. This is intriguingly different from the linear case, where the imaginary
part of the linear susceptibility, in the limit of zero loss, can be expressed as a sum of only
delta functions [14]. In [15], this fact was used to derive a general representation for the linear
susceptibility by discretizing the Kramers-Kronig relation for the real part of χ(1) using delta
functions as localized basis functions for the imaginary part of χ(1). Since the coefficients of this
representation are proportional to the linear oscillator strengths, it was then possible to derive
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an upper bound for Re
{︁
χ(1)

}︁
by using the f−sum rule. While the same mathematical trick,

using a basis of delta functions, could be applied to discretize the nonlinear Kramers-Kronig
relation in Eq. (1) (any collocation methods with localized basis functions would work), this
would not give much insight, as the resulting coefficients of this representation would not be
directly relatable to the nonlinear oscillator strengths and transition dipole moments, in contrast
with the linear case. In fact, the general expression for the imaginary part of χ(2)(ω,ω), given by
Eq. (10), suggests that a more natural choice for localized basis functions for χ(2)(ω,ω) should
include both delta functions and their derivatives, such that the coefficients resulting from this
discretization would now be directly related to the nonlinear oscillator strengths, as shown by
Eqs. (7),(8),(9). Most importantly, this approach can also yield new sum rules on the transition
dipole moments. Specifically, inserting the basis implied by Eq. (10) into the causality-based
integral sum rules in Eqs. (2)–(4) yields a discretized version of these sum rules in terms of the
nonlinear oscillator strengths,∑︂

n

′
(︂
ωn0Re{α(n)1 } +

ωn0
4

Re{α(n)2 }

)︂
−

∑︂
n′

′

Re{α(n
′)

3 } = 0, (11)

∑︂
n

′

(︄
ω3

n0Re{α(n)1 } +
ω3

n0
16

Re{α(n)2 }

)︄
−

∑︂
n′

′

3ω2
n′0Re{α(n

′)

3 } = 0, (12)

∑︂
n

′

(︄
ω5

n0Re{α(n)1 } +
ω5

n0
64

Re{α(n)2 }

)︄
−

∑︂
n′

′

5ω4
n′0Re{α(n

′)

3 } = −
e3N
16m3

⟨︃
∂3V
∂x3

⟩︃
0

. (13)

While passivity implies that the transition frequencies are positive, ωn0>0, for all energy levels,
it does not constrain the real part of the nonlinear oscillator strengths Re{α} to take only positive
values, in contrast with the linear case where the oscillator strengths are always positive. If we
then combine Eqs. (7)–(9) with (11)–(13) and after some algebraic manipulations, we obtain a
new set of discrete sum rules for the transition dipole moments:∑︂

n,m

′ωm0 − ωn0
ωm0 + ωn0

Re{x0mx̄mnxn0} = 0, (14)

∑︂
n,m

′ω
3
m0 + 3ω2

m0ωn0 + 6ω2
n0ωm0 − 4ω3

n0
ωm0 + ωn0

Re{x0mx̄mnxn0} = 0, (15)

∑︂
n,m

′ω
5
m0 + 3ω4

m0ωn0 + 6ω3
m0ω

2
n0 + 12ω2

m0ω
3
n0 + 24ω4

n0ωm0 − 16ω5
n0

ωm0 + ωn0
Re{x0mx̄mnxn0} =

2ℏ2

m3

⟨︃
∂3V
∂x3

⟩︃
0

.

(16)
Although (14) is automatically fulfilled (all n = m terms are zero, whereas for n ≠ m the

pairs (n, m) and (m, n) cancel each other), the second and third sum rules (15), (16) provide a set
of new constraints that the transition dipole moments must satisfy to be consistent, ultimately,
with the principle of causality, provided that our discretization approach is justified. In the next
section, we show that the new sum rules (15), (16) can, in fact, be derived from an independent
quantum mechanical analysis, confirming the deep connection between causality-based and
quantum-mechanics-based constraints also in the nonlinear optical case, and proving that our
proposed basis to represent the imaginary part of the susceptibility is a physically sensible choice
to discretize causality-based integral relations.

4. Independent quantum mechanical derivation

In this Section, we connect the derived sum rules, as established by the principle of causality
and the sum-over-states expression of the SHG susceptibility, with an independent quantum-
mechanical analysis. To this end, we employ generalized quantum mechanical sum rules, based
on the operator theory of quantum mechanics.
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4.1. Quantum mechanical analysis of sum rule (15)

Sum rule (15) can be alternatively obtained from the generalized Thomas-Reiche-Kuhn (TRK)
sum rules, which were derived for the calculation of fundamental limits to the off-resonance
nonlinear optical response [25–28] and were additionally used for predicting the frequency
dispersion of the hyperpolarizabilities spectrum [29] and, very recently, for the derivation of
fundamental bounds on resonant nonlinear optical responses in multi-quantum-well systems [30].
These generalized TRK sum rules can be written as∑︂

n

[︁
ωn −

1
2 (ωl + ωq)

]︁
xlnxnq =

Zℏ
2m δlq, (17)

where δlq is the Kronecker delta function and Z is the number of electrons in the system. We
take q = 0 and consider all possible values of l ∈ Z+\{0} in (17). By multiplying both sides by
ωn0xn0 and summing over all n ∈ Z+\{0}, we obtain∑︂

n

′

ω2
n0x0nx̄nnxn0 +

∑︂
n,l≠n

′

(4ωn0ωl0 − ω
2
n0 − ω

2
l0)x0nxnlxl0 = 0. (18)

Summing (18) with its index-interchanged expression, and taking into account that xij = x∗ji,
gives ∑︂

n

′

ω2
n0x0nx̄nnxn0 +

∑︂
n,l≠n

′

(4ωn0ωl0 − ω
2
n0 − ω

2
l0)Re(x0nxnlxl0) = 0. (19)

Equation (19) is simply a rearrangement of (15), as it can be seen by separating the n = m
term from the other terms of the sum in (15).

4.2. Quantum mechanical analysis of sum rule (16)

The independent derivation of sum rule (16) is more involved. First, we consider the following
commutation relations between momentum and Hamiltonian: [p, H] = −iℏ ∂V

∂x , [p, [p, H]] =

(−iℏ)2 ∂2V
∂x2 and [p, [p, [p, H]]] = (−iℏ)3 ∂3V

∂x3 , where V(x) is the potential function of the system.
Additionally, [p, [p, [p, H]]] = −3p[p, H]p.

Similar to [31], we consider a generalized sum rule:∑︂
l,m

(El − Em) ⟨0|p|l⟩⟨l|p|m⟩⟨m|p|0⟩

=
∑︂
l,m

⟨0|p|l⟩⟨l|[H, p]|m⟩⟨m|p|0⟩

= ⟨0|p[H, p]p|0⟩.

(20)

Then, since [x, H] =
[︂
x, p2

2m

]︂
= iℏ

m p, we have: ⟨n|[x, H]|m⟩ = xnmEmn =
iℏ
m pnm. Hence, we get

⟨0| [p, [p, [p, H]]] |0⟩ = (−iℏ)3
⟨︂
∂3V
∂x3

⟩︂
0

and

ℏ2

m3

⟨︃
∂3V
∂x3

⟩︃
0
= 3

∑︂
l,m
ω2

lmωl0ωm0Re (x0lxlmxm0). (21)

Our objective here is to demonstrate the equivalence between (16) and (21). To achieve this,
we perform the following algebraic manipulations to (16). The sum rule (16) can be expressed as:

2ℏ2

m3

⟨︃
∂3V
∂x3

⟩︃
0
=

1
2
(
∑︂

n,m≠n

′

Amn +
∑︂

n

′

Bnn +
∑︂
m

′

Bmm), (22)

where Anm = (−15ω4
m0 − 15ω4

n0 + 42ω3
m0ωn0 + 42ω3

n0ωm0 − 24ω2
m0ω

2
n0)Re(x0mx̄mnxn0) and Bnn =

15ω4
n0x0nx̄nnxn0.
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Again using similar algebraic manipulations as before, we take the TRK sum rules (17), for
q = 0 and all possible values of l ∈ Z

+\{0} and multiply both sides by ω3
n0xn0. We denote

Cln = −15ω3
n0(ωl0 + ωln)Re(x0lxlnxn0), so that Bnn =

∑︁
l≠n Cln. Then (22) becomes:

2ℏ2

m3

⟨︃
∂3V
∂x3

⟩︃
0
=

1
2

∑︂
n,m≠n

′

(Amn + Cmn + Cnm), (23)

where each of the summed terms of (23) can be simplified to Amn + Cmn + Cnm = 12ωn0ωm0ω
2
nm

Re(x0nxnmxm0). The equivalence of (21) with (23) is then clear.
Rather strikingly, these results show that, just as in the linear case for the standard TRK sum

rule, these new sum rules can be derived independently from either a quantum mechanical
analysis or from causality considerations combined with a suitable discretization of the relevant
integrals to connect the discretization coefficients to the transition dipole moments (10). We
stress that, although the integral sum rules have been derived from the causality properties of
the SHG susceptibility, their discrete form in terms of transition dipole moments, which rely on
generic quantum mechanical operator theory [see Eqs. (17) and (21)], is general and not limited
to any specific nonlinear process. Some intriguing consequences of these sum rules are discussed
next.

5. Examples

5.1. Two-level approximation

It is often convenient to approximate the nonlinear response of a material using a two-level
system [4]. In this case, the system can be described in its simplest form as having only two
levels: a ground state and an excited state. Despite its simplicity, this model has proven valuable
for understanding susceptibility trends in many-level systems [22]. In a many-level system, the
transition dipole moment to the first excited state can reach its maximum value when transitions
to all states beyond the first excited state are zero, per Eq. (17) (when p and q are both zero,
the sum rule yields: |x10 |

2 = ℏ
2mω10

Z −
∑︁∞

n=2
ωn0
ω10

|xn0 |
2, which is maximized when the second

term on the right-hand-side is zero ). However, this does not necessarily imply that a two-level
system exhibits the strongest possible nonlinear response compared to higher-level systems, as
the nonlinear oscillator strengths are not simply proportional to |xn0 |

2 [see Eqs. (7)–(9)] and are
not constrained by sign restrictions.

Under the two–level approximation and assuming negligible linewidth/damping, the SHG
susceptibility is given by [22]

χ(2)(ω,ω) =
3Ne3

ℏ2

ω2
10x̄11 |x10 |

2

(ω2
10 − ω

2)(ω2
10 − 4ω2)

. (24)

Interestingly, using the sum rule (16), we can relate the transition dipole moments to the
expected value of the third derivative of the potential function: x̄11 |x10 |

2 = 2ℏ2

15m3ω4
10

⟨︂
∂3V
∂x3

⟩︂
0
.

This allows us to determine a new expression for the SHG susceptibility within the two-level
approximation:

χ(2)(ω,ω) =
2Ne3

5m3ω2
10

⟨︃
∂3V
∂x3

⟩︃
0

1
(ω2

10 − ω
2)(ω2

10 − 4ω2)
. (25)

This model suggests an interesting scaling law with respect to the transition frequency that
is not immediately evident in an expression like Eq. (24) due to the dependence of the dipole
moments on the transition frequencies. In the low-frequency limit, far from resonance, the
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susceptibility scales very rapidly with respect to the transition frequency, χ(2)(0, 0) ∝ ω−6
10 . We

note however that, while the two-level approximation can be a useful simplification, such a
model for the nonlinear susceptibility does not have the correct high-frequency asymptotic
behavior and does not satisfy all the relevant Kramers-Kronig relations and sum rules; therefore,
it cannot rigorously represent a causal SHG susceptibility and cannot be used to derive universal
physical bounds and general scaling laws. Specifically, the sum rule (15) is not satisfied, and the
high-frequency asymptotic behavior follows ∼ ω−4, whereas the expected, physical asymptotic
behavior for the SHG susceptibility should be ∼ ω−6 [5,17].

5.2. Doubly resonant three-level system

A three-level system is the simplest model for which the SHG susceptibility can fully satisfy the
relevant Kramers-Kronig relations, and therefore causality. In a scenario where the levels are
equally spaced, resulting in resonance frequencies ω10 and ω20 = 2ω10, the TRK sum rules (17)
give: x̄22 = 0 and x01x̄11 = −3x02x21. The nonlinear oscillator strength at ω20 is therefore zero,
and the susceptibility doesn’t present a resonance at this frequency. If the transition frequencies
are positive (e.g., in a passive system), one can then identify two possible resonant conditions:
one when the applied field frequency coincides with the first transition frequency ω = ω10,
leading to a double-resonance, as depicted in Fig. 1(a), and a second one when ω = ω10/2,
corresponding to a two-photon resonance, as depicted in Fig. 1(b). A plot of the absolute value of
the imaginary part of the SHG susceptibility for a doubly resonant three-level system is depicted
in Fig. 1(c). This consists of two Lorentzian functions at the transition frequency, ω10, and at half
this frequency, ω10/2, as well as the derivative of a Lorentzian function at ω10, corresponding to
the double resonance phenomenon, consistent with our discussion in Section 3.

𝜔𝜔10𝜔𝜔10/2

Im
𝜒𝜒

2
(𝜔𝜔

,𝜔𝜔
)

| ⟩0

| ⟩1

| ⟩2

| ⟩0

| ⟩1

| ⟩2

𝜔𝜔10

𝜔𝜔10

2𝜔𝜔10 𝜔𝜔10
𝜔𝜔10/2
𝜔𝜔10/2

(a) (b)

(c)

Frequency, 𝜔𝜔

Fig. 1. (a) Schematic representation of level transitions related to the double-resonance
at ω = ω10. (b) Schematic representation of level transitions related to the two-photon
resonance at ω = ω10/2. (c) Absolute value of the imaginary part of the second-harmonic-
generation susceptibility for a doubly resonant three–level system.
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For a doubly resonant three-level system with vanishing linewidth, the SHG susceptibility
given by Eq. (6) can then be simplified to:

χ(2)(ω,ω) =
α1

ω10 − ω
+

α2
ω10 − 2ω

+
α3

(ω10 − ω)
2 + (ω→ −ω)∗, (26)

where α1 = −Ne3

2ℏ2
|x01 |

2 x̄11
ω10

+ Ne3

3ℏ2
x01x12x20

ω10
, α2 =

2Ne3

ℏ2
|x01 |

2 x̄11
ω10

+ 2Ne3

3ℏ2
x01x12x20

ω10
and α3 =

Ne3

2ℏ2 x02x21x10.

One can then use the sum rule (16) to obtain: |x01 |
2x̄11 = − ℏ2

4m3ω4
10

⟨︂
∂3V
∂x3

⟩︂
0

and x02x21x10 =

ℏ2

12m3ω4
10

⟨︂
∂3V
∂x3

⟩︂
0
. The SHG susceptibility can then be written in terms of the linear susceptibility

for a single Lorentzian resonance, χ(1)(ω), as first shown in [23],

χ(2)(ω,ω) = −
Ne3

2m3

⟨︃
∂3V
∂x3

⟩︃
0

1

(ω2
10 − ω

2)
2
(ω2

10 − 4ω2)

= −

⟨︂
∂3V
∂x3

⟩︂
0

2N2e3 χ
(1)(2ω)χ(1)(ω)χ(1)(ω),

(27)

which provides an analytical expression for the empirical relation between nonlinear and
linear susceptibilities known as Miller’s rule [32] and also gives a specific definition for the
proportionality constant (Miller’s constant). The derived Miller’s constant is consistent with
findings from the anharmonic oscillator model, where the expected value of the third derivative
of the potential at the ground level is substituted by the third derivative of the potential at
the equilibrium position of a simple oscillator model [33]. We stress, however, that Miller’s
rule, which can be derived rigorously for a three-level system as shown here, can only provide
approximate and qualitative predictions for more complex molecules and solid-state materials,
since realistic materials involve more than three levels. Nevertheless, Eq. (27) is expected to be
approximately valid far from the transition frequencies, for example in the low-frequency regime,
where it predicts the same scaling law as the two-level model, χ(2)(0, 0) ∝ ω−6

10 . In particular, if we
compare (25) with (27), the two-level system approximates well the predictions of the three-level
system in the low-frequency limit ω → 0:

|︁|︁|︁χ(2)2 - level

/︂
χ
(2)
3 - level

|︁|︁|︁ = 4/5. Figure 2 shows the
absolute value of the susceptibilities calculated using Eqs. (25) and (27), both normalized in the
same way. The three-level formula (27) predicts a stronger nonlinear response almost everywhere,
especially near the double resonance at ω = ω10, where the two-level model only predicts a
single resonance. In general, the strongest SHG nonlinearity occurs in this doubly resonant
scenario, with a clear trade-off between strength of nonlinearity and dispersion/bandwidth,
which is similar to the linear case [15], but with this tradeoff explicitly dependent on the spatial
derivatives of the potential function in addition to the electron density. Fig. 2(b) also shows
that the two-level formula (25) exhibits a stronger nonlinear response in the high-frequency
limit (ω→ ∞). However, this result is physically incorrect, as it violates the expected, physical
asymptotic behavior of the SHG susceptibility [5] and the relevant sum rules, as mentioned
above.

One may also wonder whether the derived expressions, constrained by the derived sum rules,
may allow establishing fundamental limits on the second-order susceptibilities of three-level
systems, perhaps improving upon existing bounds [25–27], and accounting for the tradeoffs
with dispersion and bandwidth mentioned above, as done in [15] for the linear susceptibility.
However, as is clear from Eq. (27), bounding the nonlinear susceptibility would reduce to the
challenging task of determining limitations to the expected value of the third derivative of the
potential at the ground state. Moreover, it is hard in general to account for passivity constraints
due to the non-positivity of the nonlinear oscillator strengths in the considered representation.
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Fig. 2. Absolute value of the SHG susceptibility in logarithmic scale for two-level and
three-level systems calculated using Eqs. (25) and (27), in the (a) low-frequency and near-
resonance regime and (b) high-frequency regime. Both formulas predict resonances at
ω = ω10 andω = ω10/2 (although the two-level system does not predict a double-resonance).
The three-level system results in stronger nonlinear response near-resonance and in the
low-frequency limit, while the two-level system results in stronger nonlinear response in the
high-frequency limit (such result is, however, physically incorrect, as discussed in the main
text).

For example, in the case considered above, the nonlinear oscillator strengths can be explicitly
found as α1 =

11
72

e3N
m3ω5

10

⟨︂
∂3V
∂x3

⟩︂
0
, α2 = − 4

9
e3N

m3ω5
10

⟨︂
∂3V
∂x3

⟩︂
0

and α3 =
1
24

e3N
m3ω4

10

⟨︂
∂3V
∂x3

⟩︂
0
. Clearly, these

oscillator strengths do not have the same sign and, therefore, the imaginary part of the SHG
susceptibility may take both positive and negative values throughout the frequency spectrum,
consistent with (2) and (3), without necessarily violating passivity.

We recently used a different approach to obtain fundamental limits to the resonant second/third-
order susceptibilities of three/four-level systems, albeit without accounting for bandwidth/dispersion,
using only the generalized TRK sum rules (17), which automatically encode passivity restrictions,
but no bandwidth information [30]. Moreover, we note that the derivation of fundamental limits
and scaling laws for higher-level systems will possibly require additional sum rules due to the
increasing number of unknown nonlinear oscillator strengths. Specifically, such an analysis
would necessitate sum rules that are orthogonal to the generalized TRK sum rules (17) and the
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newly established SHG sum rule (16) (whereas (15) is dependent on the generalized TRK sum
rules (17) as we showed in Section 4).

6. Discussion

In this paper, we have established a new “theoretical bridge” between causality-based integral sum
rules for the second harmonic generation susceptibility and quantum-mechanics-based discrete
sum rules that relate energy levels to transition dipole moments, the latter being valid for any linear
and nonlinear optical materials. This connection is analogous to the well-established equivalence
between the integral f−sum rule for the linear susceptibility and the Thomas-Reiche-Kuhn sum
rule [5], with our theoretical results highlighting how this equivalence between causality-based
and quantum-mechanics-based sum rules encompass also nonlinear optical phenomena.

The new set of sum rules presented here—derived both through a physically motivated dis-
cretization of the integral sum rules and from an independent quantum mechanical analysis—hold
promise for validating measurements, theoretical models, and numerical simulations, as they
provide strong constraints for the transition dipole moments and, hence, for the linear and nonlin-
ear optical response of materials. Moreover, they may offer insights into the second-harmonic
generation process across a range of scenarios, spanning from the characterization of molecular
nonlinear susceptibilities and hyperpolarizabilities to the investigation of the optical responses of
multi-quantum wells.

Looking ahead, we believe that an extension of our current analysis to third-order (and
higher-order) harmonic generation susceptibilities is feasible, offering valuable insights into these
important nonlinear optical processes and potentially unveiling new sum rules for the transition
dipole moments. Moreover, an important question is whether the sum rules established in this
work could be combined with other constraints to derive physically tight bounds on harmonic
generation and, more generally, on the nonlinear optical response of systems with more than three
levels (while in the linear case, the simplest causal system, namely, a single Lorentzian oscillator,
saturating the total oscillator strength implied by the TRK sum rule, is optimal for maximizing
the linear susceptibility [15], there is no guarantee that a three-level system maximizes the
second-order susceptibility in all scenarios).

Another interesting question is whether the developed basis for the imaginary part of the
harmonic generation susceptibility, connecting the coefficients resulting from the discretization
of causality-based integral relations to nonlinear oscillator strengths, could be used to develop
a causality-based electromagnetic scattering theory similar to [34] but focused on nonlinear
harmonic generation processes. This approach could establish a scattering representation
that inherently incorporates causality, and therefore bandwidth and dispersion properties,
potentially revealing significant constraints in the mathematical structure and physical behavior
of harmonically generated scattered fields.
Funding. Simons Collaboration on Extreme Wave Phenomena Based on Symmetries (Award No. SFI-MPS-EWP-
00008530-09); Air Force Office of Scientific Research (FA9550-22-1-0204, FA9550-22-1-0393); Air Force Research
Laboratory (FA8650-16-D-5404); Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
(203176); Bodossaki Foundation (“Stamatis G. Mantzavinos” Postdoctoral Scholarship).

Disclosures. The authors declare no conflicts of interest.

Data availability. The research data of this article are generated by the direct application of the derived equations.
All information required to replicate the presented theoretical results is available in the main text.

References
1. J. S. Toll, “Causality and the dispersion relation: Logical foundations,” Phys. Rev. 104(6), 1760–1770 (1956).
2. H. M. Nussenzveig, Causality and Dispersion Relations (Academic Press, 1972).
3. A. Yariv, Quantum Electronics (John Wiley & Sons, 1972), 3rd ed.
4. R. W. Boyd, Nonlinear Optics (Academic Press, 2020), 4th ed.
5. V. Lucarini, J. J. Saarinen, K. E. Peiponen, et al., Kramers-Kronig Relations in Optical Materials Research (Springer,

2005).

https://doi.org/10.1103/PhysRev.104.1760


Research Article Vol. 15, No. 3 / 1 Mar 2025 / Optical Materials Express 424

6. F. Bassani and S. Scandolo, “Dispersion relations and sum rules in nonlinear optics,” Phys. Rev. B 44(16), 8446–8453
(1991).

7. G. D. Boyd, A. Ashkin, J. M. Dziedzic, et al., “Second-harmonic generation of light with double refraction,” Phys.
Rev. 137(4A), A1305–A1320 (1965).

8. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-
harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726
(2009).

9. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc.
Am. B 17(10), 1685–1694 (2000).

10. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second-harmonic generation. i. transform-limited fundamental
pulses,” J. Opt. Soc. Am. B 12(9), 1704–1712 (1995).

11. E. Sidick, A. Dienes, and A. Knoesen, “Ultrashort-pulse second-harmonic generation. ii. non-transform-limited
fundamental pulses,” J. Opt. Soc. Am. B 12(9), 1713–1722 (1995).

12. M. L. Ren, R. Agarwal, W. Liu, et al., “Crystallographic characterization of ii–vi semiconducting nanostructures via
optical second harmonic generation,” Nano Lett. 15(11), 7341–7346 (2015).

13. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, 1957).
14. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972).
15. H. Shim, F. Monticone, and O. D. Miller, “Fundamental limits to the refractive index of transparent optical materials,”

Adv. Mater. 33(43), 2103946 (2021).
16. V. Chernyak and S. Mukamel, “Generalized sum rules for optical nonlinearities of many-electron systems,” J. Chem.

Phys. 103(17), 7640–7644 (1995).
17. S. Scandolo and F. Bassani, “Kramers-Kronig relations and sum rules for the second-harmonic susceptibility,” Phys.

Rev. B 51(11), 6925–6927 (1995).
18. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., 1965), 1st ed.
19. H. Kishida, T. Hasegawa, Y. Iwasa, et al., “Dispersion relation in the third-order electric susceptibility for polysilane

film,” Phys. Rev. Lett. 70(24), 3724–3727 (1993).
20. V. Lucarini and K.-E. Peiponen, “Verification of generalized Kramers-Kronig relations and sum rules on experimental

data of third harmonic generation susceptibility on polymer,” J. Chem. Phys. 119(1), 620–627 (2003).
21. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys.

20(3), 513–526 (1971).
22. G. I. Stegeman and R. A. Stegeman, Nonlinear Optics (John Wiley & Sons, 2012).
23. S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51(11),

6928–6931 (1995).
24. V. Balakrishnan, Mathematical Physics (Springer, 2020).
25. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221

(2000).
26. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25(16), 1183–1185 (2000).
27. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Select. Topics Quantum

Electron. 7(5), 774–780 (2001).
28. M. G. Kuzyk, J. Perez-Moreno, and S. Shafei, “Sum rules and scaling in nonlinear optics,” Phys. Rep. 529(4),

297–398 (2013).
29. X. Hu, D. Xiao, S. Keinan, et al., “Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis

of absorption data and Thomas-Kuhn sum rules,” J. Phys. Chem. C 114(5), 2349–2359 (2010).
30. H. Li, T. T. Koutserimpas, F. Monticone, et al., “Approaching upper bounds to resonant nonlinear optical susceptibilities

with inverse-designed quantum wells,” ACS Photon, 2025, 1 (2025).
31. S. Wang, “Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules,” Phys. Rev. A 60(1), 262–266 (1999).
32. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964).
33. F. Bassani and V. Lucarini, “General properties of optical harmonic generation from a simple oscillator model,”

Nuovo Cimento 20(7-8), 1117–1125 (1998).
34. L. Zhang, F. Monticone, and O. D. Miller, “All electromagnetic scattering bodies are matrix-valued oscillators,” Nat.

Commun. 14(1), 7724 (2023).

https://doi.org/10.1103/PhysRevB.44.8446
https://doi.org/10.1103/PhysRev.137.A1305
https://doi.org/10.1103/PhysRev.137.A1305
https://doi.org/10.1364/OE.17.013711
https://doi.org/10.1364/JOSAB.17.001685
https://doi.org/10.1364/JOSAB.17.001685
https://doi.org/10.1364/JOSAB.12.001704
https://doi.org/10.1364/JOSAB.12.001713
https://doi.org/10.1021/acs.nanolett.5b02690
https://doi.org/10.1002/adma.202103946
https://doi.org/10.1063/1.470283
https://doi.org/10.1063/1.470283
https://doi.org/10.1103/PhysRevB.51.6925
https://doi.org/10.1103/PhysRevB.51.6925
https://doi.org/10.1103/PhysRevLett.70.3724
https://doi.org/10.1063/1.1578625
https://doi.org/10.1080/00268977100100481
https://doi.org/10.1103/PhysRevB.51.6928
https://doi.org/10.1103/PhysRevLett.85.1218
https://doi.org/10.1364/OL.25.001183
https://doi.org/10.1109/2944.979338
https://doi.org/10.1109/2944.979338
https://doi.org/10.1016/j.physrep.2013.04.002
https://doi.org/10.1021/jp911556x
https://doi.org/10.1021/acsphotonics.4c01892
https://doi.org/10.1103/PhysRevA.60.262
https://doi.org/10.1063/1.1754022
https://doi.org/10.1007/BF03185520
https://doi.org/10.1038/s41467-023-43221-2
https://doi.org/10.1038/s41467-023-43221-2

