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1Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Research Lab of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
3Physics Department and Solid State Institute, Technion, Haifa 32000, Israel
4Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
5Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
*Corresponding author: bozhen@mit.edu

Received 15 July 2016; revised 23 August 2016; accepted 23 August 2016 (Doc. ID 270651); published 21 September 2016

Highly directional radiation from photonic structures is important for many applications, including high-power
photonic crystal surface-emitting lasers, grating couplers, and light detection and ranging devices. However, previous
dielectric, few-layer designs only achieved moderate asymmetry ratios, and a fundamental understanding of bounds on
asymmetric radiation from arbitrary structures is still lacking. Here, we show that breaking the 180° rotational symmetry
of the structure is crucial for achieving highly asymmetric radiation. We develop a general temporal coupled-mode
theory formalism to derive bounds on the asymmetric decay rates to the top and bottom of a photonic crystal slab
for a resonance with arbitrary in-plane wavevector. Guided by this formalism, we show that infinite asymmetry is still
achievable even without the need for back-reflection mirrors, and we provide numerical examples of designs that achieve
asymmetry ratios exceeding 104. The emission direction can also be rapidly switched from top to bottom by tuning the
wavevector or frequency. Furthermore, we show that with the addition of weak material absorption loss, such structures
can be used to achieve perfect absorption with single-sided illumination, even for single-pass material absorption rates
less than 0.5% and without back-reflection mirrors. Our work provides new design principles for achieving highly
directional radiation and perfect absorption in photonics. © 2016 Optical Society of America

OCIS codes: (230.1950) Diffraction gratings; (230.5298) Photonic crystals.
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1. INTRODUCTION

Due to their ease of fabrication and integration, as well as their
large area and high-quality factor of resonances [1], photonic crys-
tal slabs with one- or two-dimensional periodicity [2–4] have
been widely used in many applications, such as filters [5], lasers
[6], and sensors [7]. For more efficient utilization of light, it is
often desirable to achieve highly directional out-of-plane coupling
of light from photonic crystal slabs, in which light predominantly
radiates to only one side of the slab. This would eliminate the
need for a back-reflection mirror in high-power photonic crystal
surface-emitting lasers (PCSELs) [6], where fabrication uncertain-
ties in the laser wavelength and mirror-cavity distance currently
make reliably achieving high slope efficiency difficult. This could
also lead to increased efficiency of grating couplers for silicon pho-
tonics and light detection and ranging (LIDAR) devices. Previous
designs of grating couplers have achieved a top-down asymmetry
ratio (defined as the ratio of power going to the top and to the
bottom) of up to 50∶1 [8–11], but they typically make use of a
substrate reflector or involve multiple layers and grooves [12],
which complicates fabrication and could be difficult to scale to

larger areas if desired. Asymmetric out-of-plane emission from
photonic crystal defect cavities of 4∶1 has also been demonstrated
[13], but all these works were guided primarily by numerical op-
timization. It is thus important to gain an understanding of the
fundamental bounds on asymmetric radiation and use such
bounds as a guide to design stronger asymmetries.

Closely related to highly directional radiation is achieving per-
fect absorption of fields incident from a single side of a weakly
absorbing photonic structure. This can be viewed as the time-
reversal partner of the single-sided radiation emission process.
An increased absorption efficiency could be important for im-
proving the performance of many devices, including modulators
[14], photodetectors [15], solar cells [16,17]. However, the single-
pass absorption of a thin absorbing layer in air is at most 50%
[18,19]. By combining electric and magnetic responses or utiliz-
ing material anisotropy, it is possible to design metamaterial per-
fect absorbers with near-unity absorptance [19–22], but such
designs can be difficult to implement at optical frequencies.
Recent work achieving perfect absorption in photonic crystal
structures has either employed illumination from both sides
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and used the interference between the beams—analogous to a
time-reversed laser—to achieve coherent perfect absorption
[23–25] or employed a back-reflection mirror and critical cou-
pling to resonances to approach perfect absorption [26–32].
Alternatively, specific surface textures can be designed to enhance
light trapping and subsequent absorption [16,33,34], but a back-
reflection mirror is still required to keep the photons inside the
absorbing layer. In general, however, two-sided illumination can
often be challenging to implement in realistic systems, while
backing mirrors are often either lossy (e.g., metallic mirrors) or
require additional fabrication efforts (e.g., distributed Bragg re-
flectors). Therefore, the possibility of achieving perfect absorption
of fields incident from a single side, without the aid of backing
mirrors, is highly attractive and could open up many engineering
possibilities. One recent approach to achieving this is to utilize
accidental degeneracies of critically coupled modes with opposite
symmetries [35], but such an approach requires aligning the
frequencies and quality factors of multiple resonances. Here,
we first design structures with highly directional radiation and
then consider the time-reversal scenario at critical coupling to
realize devices with high absorption efficiency. Moreover, away
from the strongly absorbing resonance frequency, light can be
mostly transmitted through the designed devices, which could
have important applications in multi-junction solar cells.

Previous work [36] has used a temporal coupled-mode theory
(TCMT) formalism [37,38] with a single resonance and two cou-
pling ports (one on each side of the slab) to examine bounds of
asymmetric radiation from photonic crystal slabs. There, they
reached the conclusion that the asymmetry ratio is bounded by
�1� r�∕�1 − r�, where r is the background amplitude reflection
coefficient. For index contrasts found in realistic materials and
at optical frequencies, this bound limits the proportion of radiation
going to one side of the photonic crystal slab to around 90%, even
for the high index contrast between silicon and air. For a smaller
index contrast, this will be even more significantly different from
perfect directional radiation. We find, however, that in more gen-
eral scenarios, the bounds in Ref. [36] can be greatly surpassed.

In a periodic photonic structure, the natural choice of mode
basis is the momentum-conserving Bloch-wave basis [39]. As
shown in Fig. 1(a), for general incident directions (nonzero in-
plane momentum k⃗∥) in asymmetric structures, the time-reversal
operation relates the resonance at k⃗∥ to the resonance at −k⃗∥, sug-
gesting that a two-resonance, four-port model is required to impose
time-reversal constraints in the more general case. Moreover, reci-
procity automatically ensures that the two resonances share identical
frequencies, eliminating the need for exquisite degenerate-frequency
alignment to achieve multi-resonant responses. Only when the sys-
temunder consideration possesses certain symmetries—either in the
structure [40] (Cz

2, i.e., 180° rotation around the out-of-plane axis)
or in the incident field (normal incidence)—can we use the
simplified model [36] with only a single independent port on each
side of the slab.

In this paper, we show that the general two-resonance, four-port
TCMT formalism widely applicable to periodic structures with ar-
bitrary geometry or in-plane momentum enables bounds with sig-
nificantly higher (sometimes even infinitely high) radiation
asymmetry for realistic materials when the Cz

2 symmetry of the
structure is broken. As an example, we apply this formalism to in-
version-symmetric (P-symmetric) structures withoutCz

2 symmetry.
Through numerical examples, we show that a top-down asymmetry

ratio exceeding 104 can be achieved by tuning the resonance fre-
quency to coincide with the perfectly transmitting frequency on the
Fabry–Perot background. The emission direction can also be rap-
idly switched from top to bottom by tuning the k⃗∥ vector or fre-
quency. These results provide important design principles for
PCSELs, grating couplers, LIDARs, and many other applications
that could benefit from directional emission and rapid tuning. In
addition, we derive analytical expressions for the transmission spec-
trum and discuss features such as full transmission or reflection.We
then show that such highly asymmetric coupling to the two sides of
the photonic crystal slab can also be employed to achieve perfect
absorption of light incident from one side of the slab, without the
need for back-reflection mirrors as in previous designs.

2. TEMPORAL COUPLED-MODE THEORY
FORMALISM

We start by considering arbitrary photonic crystal slab structures
embedded in a uniform medium (identical substrate and super-
strate). We assume weak coupling, linearity, energy conservation,
and time-reversal symmetry in the system, and we consider
frequencies below the diffraction limit so that higher-order dif-
fractions are not present. A plane wave with in-plane momentum

(a)

(b)

Fig. 1. Temporal coupled-mode theory setup and transmission spec-
trum. (a) Schematic of our TCMT setup with four ports and two
resonances related by the time-reversal operation. This general setup
is valid for structures with arbitrary shapes and incident angles as long
as the assumption of four ports and two resonances is correct. (b) Typical
transmission spectrum of an inversion-symmetric, Cz

2-symmetry-broken
structure, with the Fano resonances exhibiting full transmission at certain
frequencies as predicted by our TCMT formalism. Strong asymmetry is
achieved when the Fano resonance is aligned with the frequencies where
the background reaches full transmission (red circles).
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k⃗∥ � �kx; ky� incident from the top [port 1, see Fig. 1(a)] will

only couple to resonances and outgoing waves with the same k⃗∥
(conservation of Bloch momentum). We shall consider the typical
case where there is a single resonance at k⃗∥ near the frequencies of
interest, with the transmission spectrum consisting of a Fabry–
Perot background and sharp resonant features, as in Fig. 1(b). To
describe time-reversal symmetry constraints for general geometries
and incident angles, we need to include the resonance at −k⃗∥ in our
description as well, resulting in a two-resonance, four-port model.
Although conservation of Bloch momentummeans that each input
port only excites either the k⃗∥ or −k⃗∥ resonance, the two resonances
still influence one another indirectly via the time-reversal symmetry
constraints on the coupling matrices between resonances and ports
[K and D in Eq. (1)], as described below. Writing down expres-
sions consistent with momentum conservation and time-reversal
symmetry, we obtain the TCMT equations

dA
d t

�
�
jω −

1

τ
−

1

τnr

�
A� K Tjs�i; js−i � C js�i � DA;

(1)

C � ejϕ

0
BB@

0 r 0 jt
r 0 jt 0
0 jt 0 r
jt 0 r 0

1
CCA; D � K σx �

0
BB@

0 d 1

d 2 0
0 d 3

d 4 0

1
CCA;

(2)

where A � �A1; A2�T are the amplitudes of the two resonances (at
k⃗∥ and −k⃗∥, respectively), ω is the resonance frequency shared by
both resonances, τ is the radiative e−1-decay lifetime (ω, τ are iden-
tical for the two resonances due to reciprocity), τnr is the e−1-decay
lifetime for nonradiative processes such as absorption, and
js�i � �s1�; s2�; s3�; s4��T , js−i � �s1−; s2−; s3−; s4−�T are the am-
plitudes of the incoming and outgoing waves. C is the scattering
matrix for the direct (nonresonant) transmission and reflection
through the slab (namely, the Fabry–Perot background). Energy
conservation and reciprocity constrain C to be unitary and sym-
metric. For identical substrates and superstrates, C takes the form
in Eq. (2), where t and r are real numbers satisfying
r2 � t2 � 1 that characterize the Fabry–Perot background, and
the phase ϕ depends on the choice of reference plane position.
K and D are the coupling matrices in and out of the resonances.
Time reversal flips the two resonances, so instead of the usual re-
lation D � K [37], here we have D � K σx , where σx is the 2 × 2
X -Pauli matrix acting to flip the resonances. We note that an alter-
native (and equivalent) formalism is to adopt a basis in which the
underlying modes are time-reversal invariant (for which the stan-
dard multimode treatment [37] is adequate), by superimposing the
resonance at k⃗∥ with its time-reversal partner at −k⃗∥. This is to be
contrasted with a basis change for ports, as discussed in Ref. [41].
Detailed derivations of this and the following expressions are given
in Supplement 1.

Energy conservation and time-reversal symmetry impose
constraints on the coefficients. Energy conservation requires

jd 2j2 � jd 4j2 � jd 1j2 � jd 3j2 �
2

τ
; (3)

while time-reversal symmetry gives the constraint D � K σx and
the two independent equations

ejϕ�rd�
2 � jtd�

4� � d 1 � 0; (4)

ejϕ�jtd�
2 � rd�

4� � d 3 � 0: (5)

In the following, we shall fix the phase ϕ to be 0 by appro-
priately choosing the location of our reference plane.
Equations (3)–(5) impose constraints on the values and phases
of the couplings and hence constrain the transmission spectrum
and set bounds on the asymmetric coupling ratios.

From the preceding equations, we can derive an expression for
the transmission spectrum [36,38] that only depends on the
frequencies and decay rates of the resonances and the transmission
and reflection coefficients of the direct Fabry–Perot pathway.

The full scattering matrix, including the direct pathway and
resonance pathway [37], is given by Eq. (S25) in Supplement 1.
The power reflection and transmission coefficient for a wave
incident from port 1 correspond to the amplitude squared of the
(1, 2), (1, 4) element of the scattering matrix, given by

R � jS12j2 �
����ejϕr � d 1d 2

j�ω − ω0� � 1
τ � 1

τnr

����
2

; (6)

T � jS14j2 �
����ejϕjt � d 1d 4

j�ω − ω0� � 1
τ � 1

τnr

����
2

(7)

and the power reflection coefficient can be rewritten in the lossless
limit τnr → ∞ as

R �

h
r�ω − ω0� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

τ1τ2
− r2

τ2
− 2

τσ −
1

σ2r2

q i
2 �

�
1
σr

�
2

�ω − ω0�2 � 1
τ2

; (8)

where we have written τi � 2∕jd ij2, 1∕σ � 1∕τ1 − 1∕τ4 to
simplify the expression.

This expression provides general conditions for reaching full
transmission or reflection with the Fano resonance. As shown
in Supplement 1, full transmission R � 0 can only occur when
the coupling rates satisfy τ1 � τ4, τ2 � τ3 (P-symmetric cou-
pling), consistent with the transmission spectrum shown in
Fig. 1(b). Full reflection R � 1 can only occur when the coupling
rates satisfy τ1 � τ2, τ3 � τ4 (Cz

2 symmetric coupling), consistent
with the results in Ref. [36]. Note that for structures that do not
have P or Cz

2 symmetry, it is still possible for the coupling rates for
resonances to be P or Cz

2 symmetric, leading to full transmission/
reflection features in the frequency spectrum (see for example
Supplement 1, Fig. S1).

3. GENERAL BOUNDS ON ASYMMETRIC
COUPLING RATES

We now derive bounds on the achievable asymmetry of coupling
to the top and bottom based on Eqs. (4) and (5) derived from
time-reversal symmetry. Denote jd 4∕d 2j � ar , jd 3∕d 1j � al,
and define the asymmetric coupling ratios on the right (k⃗∥)

and left (−k⃗∥) directions of the resonator as a2r and a2l (the ratio
of the power going to bottom and top). By taking the ratio of
Eqs. (4) and (5), we find

a2l �
���� jt � rarejθ

r � jtar ejθ

����
2

� t2 � r2a2r � 2trar sin θ

r2 � t2a2r − 2trar sin θ
; (9)

where θ � arg�d 2� − arg�d 4� characterizes the phase difference
between d 2 and d 4. This gives the bound
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���� t − rarr � tar

���� ≤ al ≤
���� t � rar
r − tar

����: (10)

Therefore, the amount of achievable asymmetry to top and
bottom on the left is bounded by that on the right, and vice versa.
Note that in general, the phase here can be tuned through a
2π cycle, so the bounds—even up to infinitely high asymmetry
ratios—should be saturable for the appropriate parameter choices.
The coefficients that enter the bounds are the transmission/
reflection coefficients (t, r) of the direct process (Fabry–Perot
background), as opposed to the total transmission/reflection in-
cluding the resonant pathway.

If the structure has Cz
2 symmetry, the two channels on the top

and bottom will be constrained to have the same coupling rates,
so d 1 � d 2, d 3 � d 4, al � ar . Plugging this into Eq. (10), we
find the same bound as in Ref. [36]: 1−r

1�r ≤ a2l � a2r ≤ 1�r
1−r , which

shows the consistency of our approach. In typical photonic crystal
systems at optical frequencies, the index contrast between the slab
and the background medium is limited to around 3, which con-
strains the interface reflection coefficient to be less than 0.5 for
most incident angles. This results in the Fabry–Perot direct path-
way reflection coefficient r �

ffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
being considerably smaller

than 1, so strong asymmetry in the decay rates is difficult to
achieve for Cz

2-symmetric structures without the use of an addi-
tional back-reflecting mirror.

The general bound Eq. (10) suggests, however, that much
stronger asymmetry can be achieved if we break the Cz

2 symmetry
of the system. A simple example is when the structure possesses
inversion symmetry P but breaks the Cz

2 symmetry, as shown in
Fig. 2(a). In this case, the decay rates must satisfy d 1 � d 4,
d 2 � d 3, al � 1∕ar , and Eq. (10) becomes

1 − t
1� t

≤ a2l � 1

a2r
≤
1� t
1 − t

: (11)

For any index contrast, due to the up–down symmetry of the
background material, the Fabry–Perot background will always
have frequencies with full transmission, as exemplified by the
red circles in Fig. 1(b). Therefore, by tuning the resonance fre-
quency to such points, the lower and upper bounds of Eq. (11)
approach 0 and �∞. Moreover, the bound can be saturated for
appropriate choices of structural parameters and wavevectors,
yielding arbitrarily high asymmetric decay rates of the photonic
structure in the top and bottom directions. We note that similar
design principles of breaking the Cz

2 symmetry to achieve higher
radiation asymmetry have also been realized in Ref. [42] using the
different design intuition of destructive interference.

To verify these analytical results, we perform numerical sim-
ulations using the finite-difference time-domain (FDTD) method
[43] with a freely available software package [44]. We extract the
coupling rate to the top or bottom by monitoring the field am-
plitude at reference planes placed in the far field and determine
the Fabry–Perot background transmissivity from plane-wave ex-
citation calculations. The results are given in Fig. 2(b), where each
data point in the figure (blue cross) represents the maximal asym-
metric coupling ratio searching over all k points in the Brillouin
zone, for P-symmetric structural parameter choices [Fig. 2(a)]
with h � 1.5a, w � 0.45a, n0 � 1.45, and varying nd and d
(see Supplement 1 for more details). We can see that all data
points obey the bound Eq. (11) derived above (red solid lines).
Moreover, this bound can be saturated for each value of the

background transmission coefficient by appropriate optimization of
the structural parameters and in-plane momentum. The blue crosses
that do not saturate the bound are structures with very little pertur-
bation fromCz

2 symmetry due to the choice of structural parameters.

4. EXAMPLES OF HIGHLY ASYMMETRIC
RADIATION

In this section, we provide numerical examples of strong asym-
metry that highlight two features of the extreme data points in
Fig. 2 that are not obvious from the preceding data: it is possible
to achieve high asymmetry even at the point of highest quality
factor, and it is possible to achieve rapid tuning of the direction
of asymmetry by slightly changing the frequency. As the form
�1� t�∕�1 − t� of the bound (for P-symmetric structures) sug-
gests, strong asymmetry can be achieved when the resonance fre-
quency coincides with locations of large transmissivity on the
Fabry–Perot background for any refraction index contrast.

We optimize over the structural parameters shown in Fig. 2(a)
to find examples of high asymmetry in coupling to the top and
bottom. This example consists of the second transverse electric
(TE) polarization band (nonzero Ez , Ex , Hy, classified by mirror
symmetry with respect to the x − z plane) of a 1D photonic crystal
with structural parameters h � 1.5a, w � 0.45a, n0 � nd �
1.45, d � 0.3a, as defined in Fig. 2(a). See Supplement 1 for

Fig. 2. Simulated structures and verification of TCMT bounds.
(a) The P-symmetric structure we use in our numerical examples and
its structural parameters. a: periodicity of photonic crystal, h: height
of central slab, w: width of central slab, n0: refractive index of central
slab, d : height of additional pieces on the sides (the width of the addi-
tional pieces is �a − w�∕2), nd : refractive index of additional pieces on the
sides; (b) numerical verification of TCMT bounds on asymmetric radi-
ation for P-symmetric structures. Red lines indicate the bound from
Eq. (11). Each blue cross indicates simulation results of the asymmetry
for a given structure, optimized over in-plane momentum. The transmis-
sivity t is fitted from the Fabry–Perot background, and the asymmetric
coupling ratio is calculated from the Poynting flux in the top and bottom
directions.
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a plot of the band structure. The resulting asymmetry ratio and
quality factor (Q) as a function of the in-plane kx , along with the
radiation field distribution at maximal asymmetry, are shown in
Fig. 3(a). The resonance frequency lies very close to a point of full
transmission on the Fabry–Perot background and exhibits an
asymmetry exceeding 104 at the k⃗∥ point of largest asymmetry
as well as an asymmetry over 300 at the point of highest quality
factor. It may therefore be possible to produce a laser that
preferentially emits to the top or bottom using the principles
discussed above.

Another application of our results is the rapid steering of the
direction of light emission by slight tuning of the frequency,
which could be useful for LIDARs [45] or antennas. We design
such a structure by perturbing a bound state in the continuum
(BIC) [40,46–48]. BICs are localized solutions embedded in the
radiation continuum, where, due to the destructive interference of
the amplitude for the decay between outgoing wave channels, the
quality factor of a resonance above the light line approaches infin-
ity. In previous works [40,46,47], the photonic structures were
chosen to have both P and Cz

2 symmetries. With a perturbation
that breaks Cz

2 but preserves P, the peak quality factor will be
finite but still very high [47]. We expect that this symmetry
breaking will also split the momenta where radiation toward
the top and toward the bottom vanish, thereby creating strong
asymmetry in the two directions, with the extrema separated only
by a small k⃗∥.

We choose h � 1.5a, w � 0.45a, n0 � 1.45, d � 0.1a, and
nd � 1.1, again examining the second TE band. The resulting
asymmetry ratio and frequency are shown in Fig. 3(b). The asym-
metric coupling flips from mostly radiating to the top to mostly
radiating to the bottom (by a factor of 104 ) when kx is changed by
as small as 0.05 × 2πc∕a or equivalently, when the frequency is
changed by 3 × 10−4 × 2πc∕a. The radiative quality factors of
these resonances are on the order of 106, so these two bands will
be well separated in emission. One can thereby envision rapid
tuning of the emission direction by changing the frequency of
radiation slightly. Moreover, the high Q of these resonances will
enable long propagation lengths for collimated emission from
large areas, which is important for LIDAR applications, comple-
menting the low-Q designs of conventional grating couplers.

5. PERFECT ABSORPTION WITH SINGLE-SIDED
ILLUMINATION AND NO BACKING MIRRORS

We now discuss achieving perfect absorption in photonic crystal
structures by combining the highly asymmetric coupling to differ-
ent channels and matched radiative and nonradiative quality fac-
tors. Previous work on achieving perfect absorption has utilized
metamaterial responses [19–21], interference between multiple
incident directions [23–25], or a backing mirror to confine
and trap light [26–32]. On the other hand, our results on achiev-
ing highly directional coupling suggest that it may be possible to
achieve near-perfect absorption with single-sided illumination
from the direction with strong coupling by only using dielectric
structures and without the need for any backing mirrors.
Intuitively, since the radiation coupling to one of the emission
channels is strongly suppressed, there is only one direction to
which the excited resonance can radiatively decay into.
Appropriate tuning of the quality factor can then result in destruc-
tive interference toward this direction, thus achieving perfect ab-
sorption of the incident waves.

To incorporate material loss in our description, we include a
nonradiative decay channel, setting τnr to be finite in Eq. (1). We
assume that the loss rate is small and that the direct transmission
pathway is not affected by the loss [28]. We start from a P-sym-
metric structure and incident direction where the coupling rates
have a large asymmetry ratio. The parameters are chosen such
that t is close to 1 and the asymmetry ratio saturates the bound
jd 2j∕jd 1j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� t�∕�1 − t�

p
. As shown in Supplement 1,

P-symmetry and the time-reversal constraints Eqs. (4) and (5)
imply that d 1 � d 4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 − t�∕τ

p
exp�−3πj∕4�, d 2 � d 3 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1� t�∕τ
p

exp�−πj∕4�. Plugging this into the expressions for
the power transmission and reflection coefficients, we find that
on resonance ω � ω0 and at critical coupling τ � τnr ,

R14 � R23 �
r2

4
; T 14 �

�
1� t
2

�
2

; T 23 �
�
1 − t
2

�
2

;

(12)

A14 � 1 − R14 − T 14 �
1 − t
2

; A23 �
1� t
2

: (13)

In the limit where t → 1 and r → 0, it follows that light in-
cident from port 1 or 4 will be completely transmitted (T 14 � 1),
while light incident from port 2 or 3 will be completely absorbed
(A23 � 1 − R23 − T 23 � 1). A schematic of the resulting trans-
mission and absorption characteristics is shown in Fig. 4(a).

Fig. 3. Examples of highly asymmetric radiation. (a) Plot of the asym-
metry ratio and quality factor as a function of kx , along the ky � 0 axis in
momentum space. Strong asymmetric radiation occurs over a range of
momenta, including the point of highest quality factor. Inset: log scale
plot of the z-component of the electric field amplitude at the highest
asymmetry point. (b) Similar plot for a different set of parameters, show-
ing rapid switching of asymmetric direction by tuning the frequency or
in-plane momentum.
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To verify these analytical results, we performed numerical sim-
ulations of the transmission and reflection spectrum with the rig-
orous coupled-wave analysis (RCWA) method using a freely
available software package [49]. The structural parameters are
identical to the simulation in Fig. 3(a), with the difference being
the addition of loss in the system. There is a slight shift of the
resonance location relative to the Fabry–Perot background due
to the different discretization schemes used in the FDTD and
RCWAmethods. Figure 4 shows the simulation results. As shown
in Fig. 4(b), when no loss is present (top panel), the transmissivity
is close to 1 in the vicinity of the resonance, reaching full trans-
mission T � 1 at a single point on the Fano resonance as
required by P-symmetry of the structure (see end of Section 2
for a discussion), and the reflectance is close to 0. With the ad-
dition of loss and with waves incident from the port with stronger

coupling (incident direction is θ � 3.5° from normal, middle
panel), the transmittance is reduced, and at critical coupling,
the transmittance drops to 0 for the resonance frequency, result-
ing in the full absorption of the incoming waves. On the other
hand, for the same lossy structure and for the opposite incident
direction (bottom panel), there is negligible absorption and most
of the waves are transmitted. In Fig. 4(c), we show the maximum
absorption for a given incident angle as a function of loss, clearly
showing a peak of near-perfect absorption at critical coupling. For
other incident angles near that of maximum absorption, the
Q-matching condition and asymmetric radiation condition are
still approximately satisfied, giving rise to high absorption, and
the absorption peak will shift to different frequencies following
the band dispersion, as shown in Supplement 1, Fig. S5.
Numerically, we find that when light is incident from the port
with stronger coupling, the absorption can be as high as A23 �
99.8%; when light is incident from the port with weaker cou-
pling, the transmission is T 14 � 99.4%, while absorption is only
A14 � 0.5% (this is roughly equal to the single-pass absorption
rate of 0.4% in our simulations). The numerical simulations show
excellent agreement with our TCMT predictions for a back-
ground Fabry–Perot transmissivity of t � 0.996 [Fig. 4(b)]; the
small difference comes from the contribution of absorption to the
Fabry–Perot background. Further numerical optimization placing
the resonance frequency closer to the frequency of full transmis-
sion on the Fabry–Perot background could further increase
on-resonance absorption in the desired port.

These results are widely applicable to many different absorbing
materials. The wide range of achievable resonance quality factors,
as discussed in the preceding section, implies that for both strong
and weak absorbers, structures can be designed such that there is
highly asymmetric coupling and critical coupling, yielding perfect
absorption in the system. While our simulations were performed
assuming a material with a spatially uniform absorption profile,
the generality of the TCMT formalism ensures that it is also
applicable to scenarios with only a thin active layer with absorp-
tion, such as with 2D materials [28,31,50].

6. DISCUSSION AND CONCLUSION

In conclusion, we developed a temporal coupled-mode theory for-
malism for general dielectric photonic crystal slab structures with
arbitrary in-plane wavevectors, adequately taking into account the
time-reversal-symmetry-related pair of resonances and coupling
channels. Using this formalism, we derived general bounds on
the asymmetric radiation rates to the top and bottom of a pho-
tonic crystal slab. We then used the intuitions developed from
these bounds to show examples of highly asymmetric radiation
from inversion-symmetric photonic crystal slabs, demonstrating
strong asymmetry, rapid tuning, and a variety of quality factors
for different applications. Moreover, we showed how the highly
asymmetric coupling to the top and bottom of photonic crystal
slabs can be used to achieve perfect absorption for light incident
from a single side, for a single-pass absorption rate of less than
0.5%, without the need for a back-reflection mirror as in conven-
tional setups. The highly directional radiation could greatly ben-
efit applications such as PCSELs, grating couplers, and LIDARs,
while achieving perfect absorption without the need for back-
reflection mirrors could increase the efficiency and simplify the
design of photodetectors and solar cells.

Fig. 4. Perfect absorption with single-sided illumination and no back-
ing mirror for single-pass absorption less than 0.5%. (a) Schematic for
perfect absorption at one incident angle and perfect transmission at the
opposite incident angle. (b) Transmission, reflection, and absorption
spectra for no loss (Qnr � ∞) and critical loss (Qnr � Qr ), consistent
with the theoretical results in (a). (c) Loss dependence of absorption,
showing near-perfect absorption for critical coupling.

Research Article Vol. 3, No. 10 / October 2016 / Optica 1084

https://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-3-10-1079&seq=1


While our numerical examples focused on a particular struc-
tural design, the general principle of breaking Cz

2 symmetry is
applicable to a wide range of structures. We now briefly discuss
how to implement such structures using readily available fabrica-
tion techniques. For example, gratings with slanted walls share the
same structural symmetries as those in Fig. 2(a) and thus can ap-
proach perfect single-sided radiation and absorption as well. Such
gratings can be fabricated using focused ion beam milling [51],
angled etching with Faraday cages [52], or inclined lithography
[53]. More generally, almost any of the techniques for fabricating
blazed gratings [54,55] or constructing 3D photonic crystals [39]
(e.g., layer-by-layer lithography or holographic lithography) could
also be employed in a simplified form to make an asymmetric coat-
ing. Awide range of structures breaking Cz

2 symmetry and achieving
high asymmetry can thus be realized with these different techniques.

Our work provides new design principles for achieving highly
directional radiation and perfect absorption in photonics and could
be extended to systems where there are nonlinearities, gain and loss,
different substrates and superstrates, and nonreciprocal structures
with magneto-optical effects [56]. Our work can also be generalized
to other systems characterized by temporal coupled-mode theory,
such as in-plane chiral meta-surfaces, asymmetric ring resonators,
and scattering from nano-plasmonic structures.
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