Nanoparticle design: large, tunable response

Nanoparticles can be synthesized in an amazing variety of shapes, sizes, and topologies. Design has primarily been limited to structures with spherical symmetry, however, without a theoretical basis for understanding which structures are optimal. In these papers we:

  1. Computationlly designed maximum-extinction nanoparticles (over ~1000 degrees of freedom), arriving at new, unique shapes.
  2. Used quasistatic sum rules to develop fundamental bounds on extinction by nanoparticles.
  3. Leveraged the bounds to design tailored distributions of particles that can achieve nearly ideal extinction over broad and tunable bandwidths, experimentally demonstrated with Ag nanodisks over three visible-wavelength windows. (Led by Emma Anquillare.)
  4. Experimental and analytical design of coherent plasmon-exciton coupling in J-aggregate-on-metal systems, demonstrating dark-state formation. (Led by Brendan DeLacy.)

Select publications:

  • Efficient broad- and tunable-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks, E. Anquillare, O. D. Miller, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, S. G. Johnson, and M. Soljačić, Opt. Express 24, 10806–16 (2016)
  • Coherent plasmon-exciton coupling in silver platelet–J-aggregate nanocomposites, B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, Nano Lett. 15, 2588–2593 (2015)
  • Fundamental limits to extinction by metallic nanoparticles, O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, Phys. Rev. Lett. 112, 123903 (2014)
  • Fundamental limits to optical response in absorptive systems, O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, Opt. Express 24, 3329 (2016)